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Abstract—In this paper, we put forth the problem of be-
queathing cryptoassets. In this problem, a testator wishes to
bequeath cryptoassets - e.g. secrets, static keys or cryptocur-
rency - to their heirs. Crucially, the testator should retain
control of their assets before their passing. Additionally
testator needs to maintain privacy, i.e. beneficiaries must
not learn the bequest, moreover, beneficiaries must not be
able to determine whether they will inherit at all before
testator’s decease. We formally define the security goals of
a cryptographic will (cryptowill) protocol and subsequently
present schemes fulfilling the required security properties.

Index Terms—Secret sharing, Blockchain, Cryptocurrency,
Trusted Execution Environment, Time-Lock Puzzle

1. Introduction

In a will the testator expresses their wishes as to how
their property is to be distributed at death and names one
(or more) person(s), the executor, to manage the estate
until its final distribution. In traditional wills, it is often
difficult even to interpret a testator’s intent [16], [19].
Moreover, in many cases, wills are suppressed, forged
or executed in a non-intended way [14], [30]. To rem-
edy these issues, in this paper, we explore the problem
of cryptographic wills, cryptowills for short, where the
testator aims to bequeath cryptoassets (secrets, keys or
cryptocurrency) to their heirs. Required properties of a
cryptographic will entail correctness, soundness, privacy,
authenticity and unforgeability. Aforementioned security
requirements are formally introduced in Section 4. Cryp-
tography allows us to build cryptographic wills which
fulfill prior requirements. In fact, cryptowills are strictly
an improvement over traditional wills as they provide
a self-sovereign way of bequeathing and do not allow
fraud or misinterpretation due to built-in cryptographic
mechanisms.

We differentiate between two classes of cryptographic
wills depending on the nature of the bequeathed asset.

• Static Assets. These cryptoassets (secrets, static
keys) cannot be updated, rerandomized or mod-
ified in any possible way without destroying the
asset itself. We model them as constants.

• Dynamic Assets. These cryptoassets might be
updated or rerandomized. For instance, secret keys
controlling cryptocurrencies and thus correspond-
ing addresses might be changed over time without
losing ownership of those funds.

We remark that the nature of the problem crucially
depends on the updateability of the bequest. In the fol-
lowing, in the dynamic asset case, we exclusively focus
on cryptocurrencies. We also note that a protocol for
static asset bequeathing immediately yields a cryptowill
for dynamic assets as well. However, the updateable nature
of secrets controlling cryptocurrencies allows us to create
more efficient cryptowills than in the static case, see
Section 6.1.

Just alone in Bitcoin, there are approximately ~4 mil-
lion bitcoins (~40 Billion USD) pending to redeem for
multiple years [11], [33]. This might be due to the fact
that the coins’ owners have lost control of their private
keys or passed away. Hence, this signifies that there is a
natural need for cryptographic wills.

We highlight that current solutions are unsatisfactory.
The folklore solution for bequeathing cryptoassets cru-
cially relies on the traditional legal system to enforce the
terms of the will [18]. A recurring folklore proposal is
to leave the bequest in a secure safe. However, in this
simple case, the testator cannot be certain that inheritor(s)
will indeed access the cryptoassets after testator’s passing.
Cryptoexchanges, for instance, Coinbase, does provide
ways to address the issue of transferring cryptoassets after
a person’s decease through certain centralized mecha-
nisms, but currently, no decentralized solutions exist [29].

Currently, to the best of our knowledge, there is no
known decentralized protocol to achieve self-sovereign
cryptographic wills for bequeathing cryptocurrencies. In
this problem, a testator wants to bequeath cryptocurrency
to her heirs without relying on any third parties. Present
protocols rely on trusted third parties to enforce the terms
of testator’s will, defeating the very nature of cryptocur-
rencies. A straightforward solution would be, enabled
by Bitcoin Scripts, to freeze funds until a time in the
future1. There are two fundamental drawbacks of this
simple approach: most importantly, Bitcoin scripts only
allow to freeze funds until a certain time in the future,
however, death does not necessarily occur before the time
set in the Bitcoin script. We require the testator to preserve
access to her funds until death, whose precise date is not
known a priori. Moreover, this approach lacks privacy, i.e.
heir(s) know before death, that they are going to inherit
cryptocurrencies.

Therefore, in this paper, we put forth the concept of
self-sovereign cryptographic wills. In such a protocol the

1. See: https://en.bitcoin.it/wiki/Script#Freezing funds until a time
in the future

https://en.bitcoin.it/wiki/Script#Freezing_funds_until_a_time_in_the_future
https://en.bitcoin.it/wiki/Script#Freezing_funds_until_a_time_in_the_future


testator can bequeath their cryptoassets to their chosen
beneficiaries in a privacy-preserving manner. We note that
in the dynamic asset case (e.g. cryptocurrencies) testators
can bequeath cryptoassets without applying third parties.

1.1. Model

Our model assumes a testator A, a beneficiary B
or a set of n beneficiaries {Bi}ni=1 and one (or more)
mediator(s) T = {Ti}ki=1, sometimes called executor(s).
We assume a key derivation function with hierarchical de-
terministic (HD) structure in place such that one secret can
be used to derive all required private keys and addresses
in a wallet [23]. As a result, our problem is reduced to
transferring a single secret from A to B on time.
Modelling death: in this work, we consider the following
definition of death. We model a death event as testator A
not responding to queries for a period of time τ , set by
A. For formal definition see Definition 5.

Ideally, a self-sovereign cryptographic will protocol
should fulfill the following high-level goals.

• Updateability: Testator A can update their will
anytime before death, i.e., change designated ben-
eficiaries before death but, transfer is irreversible
after death.

• Guaranteed access: legitimate beneficiary Bi
learns their entitled bequest if and only if after
event death, see Definition 8.

• Privacy-preserving: no beneficiary Bi or medi-
ator Tj , if applies, can learn anything about the
bequest before death and determine whether they
themselves are beneficiaries before death. More-
over, in case there are multiple beneficiaries, no-
body should be able to devise the identity of any
beneficiary before death, for formal definition see
Definition 9.

• Robustness: If the protocol applies third parties,
then protocol must be robust against malicious
mediator(s). In other words, mediator cannot steal
cryptoassets, cannot stop the protocol prematurely
and any deviation from the protocol can be de-
tected and proved to a third party by either A or
one of the beneficiaries Bi.

Our contributions: in this work, we provide the following
contributions:

• Self-sovereign cryptographic will. To the best of
our knowledge, we are the first to introduce and
formally define the requirements of cryptographic
will protocols.

• Constructions. We propose multiple protocols
fulfilling the aforementioned requirements. Subse-
quently, we prove that our proposed constructions
fulfill the necessary security properties in a game-
based security framework.

The rest of the paper is organised as follows. In
Section 2 we review related work and cryptographic
problems. In Section 3 we briefly provide the relevant
background on the applied cryptographic building blocks.
In Section 4 we introduce our threat model and formally
define our security goals. In Section 5 and Section 6 we
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Figure 1. Comparison between Conditional Disclosure of Secrets (CDS)
and CryptoWills. CryptoWill can be considered as a special case of CDS,
where the f predicate is time-based and we allow multiple messages
between parties.

introduce our schemes to achieve self-sovereign crypto-
graphic wills. In Section 7 we discuss the practical aspects
of our proposed cryptowill (CW) protocols and finally
point out open questions in Section 8. We provide our
security proofs in Appendix A.

2. Related work

Cryptowills can be considered as a special form of
Conditional Disclosure of Secrets (CDS) [13]. In a CDS,
there are two parties A and B with public inputs x and
y respectively and they share some common randomness
r and secret s. They wish to disclose secret s to party C
if and only if f(x, y) = 1 by sending messages mA and
mB, see Figure 1. If f(x, y) = 0, then party C should not
learn anything about secret s. Gertner et al. [13] showed
that any predicate f that can be computed by a s-size
Boolean formula admits a perfect linear CDS. Similarly
to a CDS, in a cryptowill a single party A (testator in
our jargon) wishes to disclose a secret or bequest s to
their beneficiary B. Additionally, testator A might use an
environment (TEE, mediators, a blockchain etc.) to send
messages to beneficiary B. However, in the case of CW,
it is not clear how f(x, y) could be arithmetized, if at
all. Hence, CDS protocols do not yield a solution to our
bequeathing problem. Yet, CDS security requirements are
related to those of CW, see Section 4.

Cryptowills are somewhat analogous to fair exchange
protocols [2], [3]. However, a crucial difference is that a
will is an unilateral asset transfer at an unknown date,
rather than a fair exchange of assets. Although many
ideas applied in fair exchange protocols, e.g. gradual
release [10], might also be fruitful in a cryptowill setting.

Since wills become valid only after death, whose date
is not known a priori, time-released cryptography seems a
useful tool to apply [26]. Time-lock puzzles (TLP) enable
one to encrypt messages ”to the future”. A shortcoming
of TLPs is that once they are set up, one cannot elongate
the time when the message should be released. Moreover,
one cannot modify the time-released message once it is
broadcast. Both of these requirements would be useful
in our setting. Timed commitments [8] might be suitable
in a will setting as well, however they do not provide
elongation of release time or message updateability.

For our cryptocurrency bequeathing purposes, condi-
tional payments are promising. Even though conditional
payments are implemented in most cryptocurrencies [24],
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[31], they do not offer an immediate solution to our
problem. This is because conditional payments do not
provide recipient privacy by default and they can only
be executed at a future time, which must be known at
transaction creation time. Once again, in cryptowills, the
execution time, i.e. asset transfer time, is not known at
will (transaction) creation time.

Recent advancements [22], [33] in threshold cryptog-
raphy allow a quorum to tolerate the unavailability of a
small fraction of its users. These results have many appli-
cations in cryptocurrency custody solutions. For instance,
in case of a n-out-of-n access structure, participants might
want to tolerate the loss of a single key. Without these
techniques, such funds would have been unrecoverable in
case of paralysis of a single key. These protocols are not
applicable in our problem setting as they do not fulfill our
privacy requirements while also incur heavier on-chain
and/or off-chain communication costs. However, we do
note that they might offer viable alternatives to the thresh-
old cryptowill constructions, introduced in Section 5.2.

3. Preliminaries

In this section, we shortly review our used notations
and the necessary building blocks of our self-sovereign
cryptographic will protocols. Namely, we briefly provide
relevant background on Hierarchical Deterministic (HD)
wallets [17], [23] and Time-Lock Puzzles (TLPs) [26].
Afterwards, we present formally the security requirements
of a cryptographic will protocol.

3.1. Notations

In the following let λ denote the security parameter.
If an element r is uniformly randomly sampled from a
set S, we write r ∈R S. The set of integers from 1 to k
inclusive is denoted as [k]. Let G denote a cyclic group of
order q, in which the Discrete Logarithm Problem (DLP)
is computationally hard. The generator of the group is
denoted as G. Negligible functions are denoted as negl(·).
hash(·) denotes a cryptographically secure hash function.

We use standard syntax for semantically secure en-
cryption schemes (Gen,Enc,Dec) and for digital signature
schemes (Gen,Sign,Vrfy) [20]. We allow the decryption
algorithm to output a special symbol ⊥ to indicate an
invalid ciphertext. Throughout the paper, we assume that
the applied digital signature scheme is existentially un-
forgeable.

In this paper, A denotes a testator, who wants to
prepare a cryptographic will. Testator A might have a
single heir, denoted as B, or possibly a set of beneficiaries:
B = {B1,B2, . . . ,Bn}. A might set a time period of
response, in which every period they need to provide a
“life signal”; we denote the length of this period as τ . If
a protocol involves one (or more) mediator(s), we denote it
as T = {Ti}ki=1. All parties are modelled as probabilistic
polynomial-time (PPT) Turing-machines.

3.2. Bitcoin and Hierarchical Deterministic Wal-
lets

In the following, we assume that the reader is familiar
with the basics of Bitcoin. An extensive introduction is

provided in [1].
In this work, we assume the standardized way of gen-

erating Hierarchical Deterministic (HD) wallet is used. An
HD wallet structure allows a sender to non-interactively
derive addresses for a receiver. Specifically, a sender given
master public key Q̂, can derive so-called child public
keys Q1, Q2, . . . , without being able to tell the underlying
secret keys d̂, d1, d2 etc. This is because there is no
related-key attack against HD wallet keys. Such an attack
would imply the existence of a distinguisher between the
hash function hash(·) and truly random bits. Hence it is
safe to publicly expose Q̂. As can be seen in Figure 2,
HD wallet keys Qi, indeed match child private keys di.

Public Parameters: Elliptic curve group G of order
q with generator G.

1) Generate a master private key d̂ ∈R Zq.
Derive master public key Q̂ = d̂G.

2) Calculate child private keys di = d̂ +
hash(i, Q̂) mod q, for i = 1, 2, . . . .

3) Child public key derivation for index i is
done by calculating:

Qi = Q̂+ hash(i, Q̂)G

HD-wallet key derivation protocol

Figure 2. Hierarchical Deterministic Key Derivation protocol, adapted
from BIP32

We note that BIP-32 [32] compliant Bitcoin wallets
admit a vulnerability, in which the compromise of a single
child public key enables an attacker to devise all the child
public keys corresponding to a master public key. One
can make an HD wallet resistance to such a key leakage
attack up to the compromise of m child public keys [17].

3.3. Time-Lock Puzzles

Time-Lock Puzzles (TLPs) enable one to encrypt mes-
sages to the future. The guarantee provided by TLPs is
that adversary A cannot decrypt a message significantly
faster than some time T , even if A has “polynomially
many” parallel processors and can compute a possibly
large amount of precomputation. Let us recall the standard
definition of Puzzles and Time-Lock Puzzles [7].
Definition 1. (Puzzles). A puzzle is a pair of algorithms

(Puzzle.Gen,Puzzle.Sol) with the following syntax.

• Puzzle.Gen(t, s)→ Z is a probabilistic algorithm
that takes as input a difficulty parameter t and a
solution s ∈ {0, 1}λ, and outputs a puzzle Z.

• Puzzle.Sol(Z) → s is a deterministic algorithm
that takes as input a puzzle Z and outputs a
solution s.

We require the following security requirements to hold for
a puzzle.

• Completeness: for every security param-
eter λ, difficulty parameter t, solution
s ∈ {0, 1}λ and puzzle Z in the support of
Puzzle.Gen(t, s),Puzzle.Sol(Z) outputs s.

• Efficiency:
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– Puzzle.Gen(t, s)→ Z can be computed in
time poly(log t, λ).

– Puzzle.Sol(Z) can be computed in time t ·
poly(λ).

In a time-lock puzzle, we require that the parallel time
required to solve a puzzle is proportional to the time
it takes to solve the puzzle honestly, up to some fixed
polynomial loss.
Definition 2. (Time-Lock Puzzles). A puzzle

(Puzzle.Gen,Puzzle.Sol) is a time-lock puzzle
with gap ε ≤ 1 if there exists a polynomial t(·),
such that for every polynomial t(·) ≥ t(·) and
every polysize adversary A = {Aλ}λ∈N of depth
dep(Aλ(Z)) ≤ tε(λ), there exists a negligible
function negl(·), such that for every λ ∈ N, and every
pair of solutions s0, s1 ∈ {0, 1}λ:

Pr

[
b← Aλ(Z) : b← {0, 1},
Z← Puzzle.Gen(t(λ), sb)

]
≤ 1

2 + negl(λ).

(1)

3.4. Trusted Execution Environment

Trusted execution environment (TEE) provides a
tamper-free processing and computation environment. A
major aim of TEE’s is to solve the problem of secure re-
mote computation which involves processing computation
on a machine owned by an untrusted party while having
integrity and security guarantees. One example of such
a system is Intel SGX [9], which implements a secure
container using trusted hardware to grant a remote user
the ability to upload the computation and data to this
container. Several mechanisms are deployed to ensure the
integrity of the executed computation and the confiden-
tiality of intermediate data.
Definition 3. (Secure Enclave) A TEE consists of a Pro-

cessor Reserved Memory (PRM) system which con-
tains Enclave Page Cache (EPC) which has multiple
designated memory pages to store data and code. Each
such page refers to a distinct secure enclave. Each
enclave is required to have an associated certificate
and the author is identified by the public key used to
issue the certificate. A secure enclave has two different
attributes, associated data and associated code. We
will denote an enclave as E(data, code) in the fol-
lowing. Enclave measurement, M(E(data, code)), is
the hash of the data and code placed inside the enclave
preserving order and position.

We require the following high-level properties to hold
in a TEE [27].

• Confidentiality: The code, data and runtime states,
e.g. CPU registers, memory and sensitive I/O, of
a TEE is not revealed to any party.

• State Integrity: The integrity of runtime states
and computation inside an enclave is ensured by
isolating the enclave’s code and data from any
external environment like the rest of the operating
system and attached hardware devices. States are
stored in persistent memory.

• Dynamic: The data and the code of a TEE can be
updated during execution.

• Secure: An ideal TEE is secure against all software
and hardware attacks.

• Trustworthy: A TEE can provide a proof of cor-
rectness of the executed computation to any third-
party.

• Attestation: Provides users proof that they are
interacting with some software running inside a
secure container and that this service is hosted by
trusted hardware. This, in a sense, is a proof of
authenticity of the enclave.

Definition 4. A TEE can be described as these following
algorithms.

• TEE.Create() → E(∅, ∅) creates a new, uninitial-
ized enclave from a free EPC page.

• TEE.Add(E(∅, ∅), data, code)→ E(data, code)
loads the data and the associated code to the
enclave.

• TEE.Measure(E(data, code))→ M(E(data, code))
Outputs an enclave measurement. Enclave
measurements (M(E(., .)) is used by a remote
party for attestation purposes. Any connecting
remote party would compare the expected
measurement and the measurement reported by
the trusted hardware to establish trust.

• TEE.KeyDerive(E(data, code))→ key, pk, sk.
Derives symmetric key for output encryption,
decryption and the public key, secret key
associated with this particular enclave. The secret
key is not published but stored in the enclave.

• TEE.Execute(E(data, code), input)→ Enckey(output)
executes TEE’s code on some data and input.
It produces output which is encrypted with the
enclave secret key.

• TEE.Remove(E(data, code))→ E(∅, ∅) clears all
the assigned memory and deassigns processing
power assigned to the initialized enclave.

4. CryptoWills: definitions and security
model

In this section, we describe the participants, their inter-
actions in the system and the goals we aim to achieve by
a cryptographic will protocol. Additionally, we provide an
informal explanation of the setting and present formally,
the algorithms and the definitions of security.

4.1. Participants, communication and threat
model

We assume broadcast messages and transactions in
the network are delivered with a maximum delay under
the bounded synchronous communication setting [4]. We
expect, that all communication between participants is
authenticated and encrypted. Furthermore, in the case of
cryptocurrency bequeathing, we assume all actors can
access and read the current head of the blockchain to
verify if transactions are appended to the blockchain.
We remark that these are standard assumptions in the
blockchain literature [5], [12].
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In this work, we only explore the ramifications of the
following definition of death, however, we do acknowl-
edge that there might be other useful and meaningful
definitions of death.
Definition 5. (Death) Party A is considered to be dead if

more than τ time has elapsed since their last message,
where τ is a public parameter of the CW protocol.

We introduce the following predicate. The predicate
isAlive(pk) given a public key pk evaluates to 1 if partic-
ipant holding pk is alive, otherwise 0.

The adversary may corrupt both beneficiaries and
mediators. Furthermore, we assume the adversary cannot
corrupt the testator. If the testator is corrupt, then there is
no meaningful cryptowill that could be established. Lastly,
in the case of cryptocurrency bequeathing, we assume
that the adversary cannot control the majority of the
cryptocurrency consensus participants, i.e. the underlying
blockchain platform is secure.

4.2. CryptoWill

A cryptographic will scheme consists of the following
six PPT algorithms.
Definition 6. (Cryptographic will (CW)) A cryptographic

will scheme is a tuple of PPT algorithms
CW = (CW.Setup,CW.KeyGen,CW.Create,CW.Update
CW.Fulfill,CW.Verify) with the following behaviour:

• CW.Setup(λ)→ pp: The setup process generates
public parameters pp. The public parameters in-
cludes the domains of all keys and τ time parame-
ter introduced in Definition 5. All other algorithms
take as input pp implicitly.

• CW.KeyGen(λ)→ sk, pk: Testator, beneficiaries
and potential third parties generate themselves a
key pair for subsequent use.

• CW.Create(skA, b, τ)→ cw, aux: Testator A pre-
pares their will given their secret key skA, bequest
b and time of response τ . The algorithm outputs a
cryptowill cw and some auxiliary information aux.

• CW.Update(skA, cw, b∗, τ∗)→ cw∗, aux∗: A tes-
tator can update their will with a new bequest and
potentially a new distribution of the bequest to
their heirs. Testator might also update their time
of response to τ∗. The update algorithm outputs a
new will cw∗ and new auxiliary information aux∗.

• CW.Fulfill(skBi , aux)→ bi/⊥: Beneficiaries could
fulfill testator’s will cw, obtaining the intended
bequest bi if isAlive(pkA) = 0 or it outputs ⊥ if
they were not allowed yet to access their bequest,
i.e. isAlive(pkA) = 1, or they are not included in
the will as beneficiaries.

• CW.Verify(pkA, bi)→ 0/1: the origin of a bequest
bi can be assessed by the verification algorithm
given testator’s public key pkA and the bequest bi.
If the bequest was created by pkA, then output 1,
otherwise 0.

We emphasize the difference between cw and aux. In
most constructions, cw is kept secret from beneficiaries
as they solely have access to some auxiliary information
aux. Subsequently, aux will enable beneficiaries to recover
their bequests from cryptowill cw.

In accordance with our formalisation of death in
Defintion 5 the algorithm CW.Update will allow testators
to signal in each epoch that they are alive. One can also
think of that algorithm as a life signal which prevents the
release of the bequests to beneficiaries.

We remark that CW.Fulfill should solely output the
bequest to intended beneficiaries after testators’ death.
Hence, each beneficiary can only check the authenticity
of their own bequest (CW.Verify) once they obtained it
by calling CW.Fulfill. This also signifies that CW.Verify
does not provide public verifiability, i.e. beneficiaries can
only check the validity of their own bequest.

4.3. Security goals

Hereby, we motivate and subsequently formally intro-
duce the required security properties of a cryptographic
will protocol. We introduce a new predicate, namely
isBeneficiary(cw, pk) returns 1, if a participant holding pk
is included in a cryptographic will cw, otherwise 0.
Definition 7. (Correctness). A CW scheme satisfies perfect

correctness iff. after testator’s death each beneficiary
receives their bequest they are entitled to according to
the will, specifically, for each Bi when isAlive(pkA) =
0 it always holds that CW.Fulfill(skBi , aux) = bi.

Naturally, we also require that beneficiaries should not
be able to learn a bequest other than their own.
Definition 8. (Soundness). A CW scheme satisfies sound-

ness iff. no beneficiary can access bequests other
than theirs with non-negligible probability. Namely,
according to the will cw, for each Bi it holds that
Pr[CW.Fulfill(skBi , aux) = bj ∧ i 6= j] ≤ negl(λ).

We demand privacy guarantees similar to those already
achieved by traditional wills, where beneficiaries can only
learn the content of the will after testator’s passing.
Moreover, beneficiaries cannot decide whether they are
included in a will. Therefore we capture our notion of
privacy with the following two privacy games as follows.
Definition 9. (Privacy) We denote the first privacy ex-

periment as HeirHiding(A1, λ) with adversary A1.
The privacy experiment is played between A1 and a
challenger C as follows: The challenger C creates a
will cw and includes A1 in cw with probability 1

2 .
Adversary A1 outputs a bit indicating whether they
deem they are included in the will as beneficiary or
not. The output of the HeirHiding(A1, λ) experiment is
1, if A1 guessed challenger’s random choice correctly,
otherwise 0. Hence, we require that no A1 can do
better than guessing. More formally, the probability
that the adversary wins the HeirHiding game, i.e.
Pr[HeirHiding(A1, λ) = 1] amounts to

Pr[A1(pkC, aux) = isBeneficiary(cw, pkA1)|isAlive(pkC) = 1] ≤ 1
2 + negl(λ)

(2)
Similarly, we define our second privacy game,
BequestHiding(A2, λ) as follows. A2 chooses two
bequests b0A2

, b1A2
and sends to the challenger. Chal-

lenger C chooses c ∈R {0, 1} uniformly at random
and creates a will cw with bcA2

as the bequest. Upon
receiving aux from challenger, A2 outputs a bit in-
dicating which bequest was included in the will. We
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require that no A2 can do better than guessing. For-
mally, we demand that the probability that A2 wins the
BequestHiding game, i.e. Pr[BequestHiding(A2, λ) =
1] amounts to

Pr[A2(pkC, aux) = c|isAlive(pkC) = 1] ≤ 1

2
+ negl(λ)

(3)

A CW scheme is said to be private iff. there exists no
A1 or A2 such that they can win the privacy games
HeirHiding(A1, λ) or BequestHiding(A2, λ).

Note that we only require privacy to hold before the
passing of the testator. Clearly, no meaningful privacy can
be achieved once testator deceased, since by then bequests
are known to all entitled beneficiaries.
Definition 10. (Secure CryptoWill) A CW scheme is

said to be secure, iff. it satisfies perfect correctness,
soundness and privacy.

Hereby, we introduce the oracles which the adver-
sary A has access to. In the following, we assume that
adversary A can only corrupt beneficiaries or mediators
but not the testator. We note that if we let testator to be
corrupted, then no meaningful cryptowill is possible to be
established.

• Puzzle.Sol(Z): given a TLP Z, an oracle returns
to A with a solution s at least in time t.

• HD.Derive(Q, i): given a public key Q and an
index i, oracle returns with the ith child public
key corresponding to the master public key Q.

• Key.Gen(sk): given a secret key sk ∈R Zp, the
oracle outputs a random public key Q.

• Corr(i): given an index i ∈ [n], the oracle returns
to A with secret keys ski of beneficiary Bi.

5. Static asset bequeathing

In this section, we introduce and analyse the problem
of bequeathing static cryptoassets. Such assets cannot be
updated or rerandomized without destroying them. Exam-
ples include secrets or static keys. In this case, a testator’s
main goal is that beneficiary only learns the bequest only
after testator’s death.
Straw man solution: A simple solution might be to send
out the bequest as a solution of a TLP to designated
beneficiaries. Unfortunately, in this case, all beneficiaries
learn all their bequests already after one epoch of length
τ . Hence, testators want to release the bequests, only
when it is necessary. This could be easily achieved by a
trusted third party who safeguards TLPs and sends them
to beneficiaries. Since we want to lower trust assumptions
as much as possible we improve upon the previous idea by
replacing the trusted third party with a trusted execution
environment (TEE).

5.1. CW from TEEs

In our first construction we assume access to a TEE.
Our protocol consists of a testator A, a set of beneficiaries
B = {B1, B2, . . . , Bn} and TEE T. A cryptowill CW
scheme can be obtained by applying a TEE as follows.

Definition 11. (TEE-based CW) A TEE-based
CW scheme is a tuple of six PPT algorithms,
CW = (TEECW.Setup,TEECW.KeyGen,TEECW.
Create,TEECW.Update,TEECW.Fulfill,TEECW.Verify).

• TEECW.Setup(λ)→ pp, pkT: Public parameters
pp contains the description of group G and τ ,
furthermore A invokes a new secure enclave
TEE.Create() to allocate an enclave for CW.
Moreover, the public key of the enclave, pkT, is
known to all parties.

• TEECW.KeyGen(λ)→ sk, pk. Each party gener-
ates a key pair: a secret key sk and a public key
pk. Public keys are shared with the TEE.

• TEECW.Create(skA, b)→ cw, aux. Testator cre-
ates a cryptowill of the form cw = {cnt, b,B} =
{0, {EncpkBi

(bi)}ni=1,B}, where cnt is a counter,
b is the array of the bequests encrypted under ben-
eficiaries’ public keys, B is the array of beneficia-
ries. Auxiliary information is aux = {}. Testator
sends cw to T. The testator adds the will to the
TEE by calling TEE.Add(E(∅, ∅), cw, code).

• TEECW.Update(skA, cw, b∗)→ cw∗, aux∗. Testa-
tor can update their will by sending a new cryp-
towill cw∗ = {cnt + 1, {EncpkBi

(b∗i )}ni=1,B∗}.
Again, auxiliary information is aux∗ = {}.
For updating the will, the testator has to re-
move the current enclave and follow the pro-
cedure again as after calling TEE.Init() on
an enclave, the code and associated data can-
not be changed. Therefore, this enclave is re-
moved by the testator using TEE.Remove(). The
testator now performs a fresh enclave setup
with updated code and cryptowill by calling
TEE.Create(),TEE.Add(E(∅, ∅), cw, code).

• TEECW.Fulfill(skBi , aux)→ bi/⊥: See
Algorithm 2. At a high level, Bi can ask T
for their bequest: TEE T would delay the answer
by time τ in which the testator A can provide a
proof they are alive. Only if bequest exists for
Bi and A is not alive, Bi will get their cryptowill
cwBi

.
• TEECW.Verify(pkA, bi)→ 0/1.: Once bi is re-

leased, beneficiaries verify the authenticity of their
bequest. If the bequest was verified against testa-
tor’s key pkA, then Bi outputs 1, else outputs 0.

Security: As per our definition of TEE, see Definitions 3
and 4, and its relevant security properties, we claim the
following theorem.

Theorem 5.1. Assuming that the TEE is secure, the
TEECW scheme is a secure CW protocol.

We give details on the proof of Theorem 5.1 in Ap-
pendix A.

A note on clock and TEEs: We note that under our
security model of TEE, there is no assumption on the
TEE being able to provide a clock. On the contrary, to
the best of our knowledge, TEE has no guarantees over
the clock it is given. In our construction, we do require
a notion of time, the testator must provide a life signal
to the TEE within some time τ . As can be seen in the
construction the TEE does not rely on any clock at all.
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The TEE uses the guaranteed delay given from the time
lock puzzle to measure if A is respondent as they should.

We note that the previous construction introduced in
Definition 11 implicitly assumes that TEE is online and
responsive even after testator’s decease. In the TEECW
cryptowill construction the TEE operates on a secure
enclave E(data, code), where data is the actual cryptowill
in each round, while code is the code stored and executed
on the TEE, see Algorithm 2.

Algorithm 2: The code running on the TEE
Result: cwBi/⊥
Input: skBi

, aux;
Step1: Identify Bi: Bi signs a fresh challenge

from T. T uses pkBi
to verify;

Step2: choose s←R Zq;
Z = Puzzle.Gen(τ, s);
send Z to Bi;
Set flag = 0;
if any message received from testator A then

set flag = 1;
Upon receiving solution s∗ from Bi;
if cwBi

== ⊥ then
return ⊥;

else
if flag == 1 ∨ s∗ 6= s then

return ⊥;
else

return cwBi;

5.2. Threshold CWs

The previous protocol introduced in Section 5.1 as-
sumes that the availability, integrity and confidentiality
guarantees of the applied TEE scheme remain fulfilled
throughout the cryptowill protocol’s execution. The poten-
tial lack of any of these guarantees would harm the desired
security properties of the cryptowill protocol. Therefore
the TEE constitutes a single point of failure in the con-
struction described in Section 5.1.

One might distribute the assumed trust in a static asset
bequeathing protocol by applying, for instance, threshold
secret sharing schemes [28]. The testator could share
secret shares of beneficiaries’ bequest among n designated
mediators. Among these n peers, k of them is assumed
to be honest and release secret shares to beneficiaries if
and only if the testator has passed away. In contrast to the
previous construction, this protocol tolerates compromise
up to n− k mediators.

In Appendix B we provide a concrete manifestation of
threshold CW based on multi-authority ciphertext-policy
attribute based encryption [21].

6. Dynamic asset bequeathing: the case of
cryptocurrencies

In this section, we introduce a protocol for bequeath-
ing dynamic assets, i.e. assets which can be updated,
modified anytime. Cryptocurrencies are a remarkable ex-
ample of such an asset. Namely, cryptocurrency holders

can move their funds to new addresses anytime they want,
thus ”refreshing” the underlying secret keys controlling
the assets. This convenient property allows us to build a
bequeathing protocol without additional third parties. In
the remaining of this section, we exclusively focus on
enabling a testator to bequeath cryptocurrency. Neverthe-
less, the introduced techniques and ideas can be used to
bequeath any kind of dynamic asset.

Even though most cryptocurrencies support condi-
tional payments, they do not provide a solution to our
original bequeathing problem. A conditional payment al-
lows a sender to transfer assets to a receiver conditionally
by making funds redeemable if and only if a receiver
fulfills a certain condition, e.g. a receiver needs to provide
a preimage of a hash value (hashlock) or funds are only
redeemable after certain time elapsed (timelock).

Conditional payments with timelocks allow of build-
ing, for instance, futures contracts. Nonetheless, such a
simple solution is not applicable in our context, as time-
locks only provide a statically known future date for the
timelock date. In stark contrast to futures contracts, the
execution time of cryptowills is not known when will is
prepared. Another prohibitive deficiency of timelocks is
the lack of privacy guarantees, which is essential for a
cryptowill.

Since previous solutions fell short to satisfy our de-
sired properties of cryptocurrency cryptowills, in this sec-
tion we introduce our self-sovereign protocol to bequeath
cryptocurrency.

6.1. UTXO-based cryptocurrencies

In the following protocol, we assume that testator
wishes to bequeath a UTXO-based cryptocurrency, for
instance, Bitcoin [24]. Hereby we do not assume a Turing-
complete execution environment, hence, with minor mod-
ifications, the protocol can easily be adapted to almost all
cryptocurrencies.
Straw man solution: a testator might send the secret key
of each UTXO comprising the bequest as a solution of n
different TLPs to the n designated beneficiaries. However,
in this case, both correctness and privacy would rely on
the security of the TLP. This shortcoming can be amended
by applying Bitcoin Scripts. Each bequest UTXO created
by the testator will define a simple logic expressing when
it can be redeemed by entitled beneficiaries. At a high
level, each UTXO can be either redeemed by the testator
or after τ time by beneficiaries with a secret key released
also in τ time. This way correctness will be enforced by
Bitcoin Scripts, while only privacy will depend on the
security of TLPs.

The intuition behind the construction is that by ap-
plying TLPs one can not only elongate the revealing of
the secret but also preserve privacy utilizing an HD wallet
structure. By solving a TLP B learns whether they inherit
cryptoassets, if the testator has passed away. Otherwise,
the testator can move the asset before the TLP can be
solved. We emphasize that before solving the TLP, for
beneficiaries remains hidden the intent of the testator.
Crucially, the dynamic nature of the cryptoasset enables
testator to elongate indefinitely the revealing of the cur-
rent secret keys. Hence, we introduce our cryptocurrency
cryptowill in the following.
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Definition 12. (Cryptocurrency CryptoWill) A
cryptographic will scheme for cryptocurrencies
is CCW = (CCW.Setup,CCW.KeyGen,CCW.Create,
CCW.Update,CCW.Fulfill,CCW.Verify) with the
following behaviour:

• CCW.Setup(λ)→ pp: is the description of group
G and time of response τ .

• CCW.KeyGen(λ, pp)→ sk, pk: Each participant
generates a key pair: a secret key sk and public
key pk. We assume that pk is a master public key
in a HD wallet structure allowing parties to non-
interactively derive public keys for each other.

• CCW.Create(skA, b, τ)→ cw, aux: cw is a cryp-
tocurrency transaction containing output UTXOs
bi, one for each beneficiary. Each bequest UTXO
is timelocked in the future with timelock now+τ .
The bequest’s secret key can be obtained in the
following way. Testator sends auxiliary informa-
tion auxi = Zi = Puzzle.Gen(τ, si) for each
beneficiary Bi. The solution si of each TLP Zi will
allow Bi to redeem her bequest, UTXO bi. The
corresponding public key for each UTXO bi can
be obtained as HD.Derive(pkBi , si). Additionally
each bequest UTXO can be redeemed by testator
before now + τ .

• CCW.Update(skA, cw, b∗, τ∗)→ cw∗, aux∗: The
updated cryptowill transaction cw∗ redeems
UTXOs bi of cw, hence invalidating it. The new
cryptowill cw∗ contains a new set of bequest
UTXOs, denoted as b∗. The new auxiliary infor-
mation aux∗ = Z∗i = Puzzle.Gen(τ∗, s∗i ) contains
the new time-lock puzzles for each beneficiary.
Again, each bequest UTXO can be redeemed by
A before now + τ or by designated beneficiaries
after now + τ .

• CCW.Fulfill(skBi , aux)→ bi/⊥: if Bi learns the
solution si of TLP Zi, namely si = Puzzle.Sol(Zi),
then they can redeem their corresponding UTXO
bi in the cryptowill cw. Beneficiary Bi can re-
deem her bequest by obtaining the public key
HD.Derive(pkBi , si), whose corresponding secret
key is only known to her due to the security
guarantees provided by HD wallets [17], [23].

• CCW.Verify(pkA, bi)→ 0/1: each beneficiary can
verify the authenticity of the cryptowill by verify-
ing the cryptocurrency transaction’s signature. If
it is signed by the public key pkA corresponding
to testator A, then outputs 1, otherwise 0.

Theorem 6.1. Assuming that the TLP is secure, the CCW
scheme is a secure CW protocol.

7. Deployment and practical aspects

Recently a handful of companies started to provide and
implement centralised bequeathing solutions to cryptoas-
set holders [25], [29]. Therefore, it is particularly impor-
tant to consider the practical aspects and potential hurdles
of the decentralized solutions we introduced previously.

7.1. CryptoWills for Static Assets

As a testator wishes to lower their trust assumptions,
it is not clear which of our proposed static asset be-
queathing schemes, i.e. TEE CW or Threshold CW, is
more satisfying from a trust minimisation perspective.
Recent severe attacks against [15] popular TEEs, i.e. Intel
SGX, damaged TEEs’ reputation. Moreover, it is also
problematic how testator secures a machine equipped with
a TEE, which is accessible over the internet even after
their decease. The testator might run such a machine on
its own or rent one from a cloud provider. Therefore,
in practice, Threshold CWs might be more reasonable to
apply.

7.2. CryptoWills for Dynamic Assets

Interestingly dynamic assets, specifically cryptocur-
rencies, admit CW schemes, where testators only need
to trust the underlying blockchain for availability and
integrity. We note that in our scheme, introduced in Def-
inition 12, we implicitly assumed that testator knows a
public key owned by their beneficiaries and built our
construction accordingly. In case if beneficiaries do not
own yet cryptocurrency addresses, then testator sends the
corresponding secret key as a solution to their heirs in the
TLP.

OP DUP OP HASH160 < pubKeyHashTestator >
OP EQUALVERIFY OP CHECKSIG OP NOTIF
< expirytime > OP CHECKLOCKTIMEVERIFY OP DROP
OP DUP OP HASH160 < pubKeyHashBeneficiary >
OP EQUALVERIFY OP CHECKSIG

TABLE 1. BITCOIN SCRIPTS IMPLEMENTING THE SCHEME
INTRODUCED IN SECTION 6

For Bitcoin, one can easily implement the simple logic
safeguarding the bequest UTXOs in the Bitcoin Script
programming language, see Table 1.

8. Conclusion and Open Questions

In this paper, we introduced and formally defined the
problem of cryptographic wills. Moreover, we explored
the problem space and proposed several novel solutions
to address the issue of bequeathing cryptoassets in a
self-sovereign and privacy-preserving way. We feel the
following directions would be valuable for future work.
Definition of death: might be interesting to explore other
cryptographically meaningful definitions of event death.
Quantum-resistant CryptoWill: it remains an open ques-
tion whether there exists a quantum-resistant cryptow-
ill protocol. We note, that the existence of a quantum-
resistant time-lock puzzle would imply the existence of a
quantum-resistant cryptowill protocol as well.
CryptoWills without timing assumptions: it remains a
fascinating open problem, whether it is possible to create
a CW scheme without timing assumptions.
Lower bounds for CryptoWill communication com-
plexity: it remains an open question whether it is possible
to achieve a secure CryptoWill protocol with a single
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message or with 2 messages just like in the CDS proto-
col [13]. Currently, we need one message from the testator
to beneficiaries in each round.
Applications: we expect to see more applications and
use cases for CryptoWills. One potential application area
of ideas used in CryptoWills might be futures contracts
that roll forward. In a roll forward traders elongate the
expiration date of the futures contract. Typically traders
do not know at which date the rolling futures contract
will be executed, just like in a CryptoWill. More generally
speaking, CryptoWill-like protocols enable a protocol to
elongate its execution or expiration date till an unknown
future date.
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Hereby we enclose our informal proofs of security of
Theorem 5.1 and Theorem 6.1.
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Appendix A.
Security Arguments

A.1. Proof of Theorem 5.1

Correctness. The bequest is a ciphertext encrypted using
pkBi

. Therefore, conditioned on the release of the cipher-
text by the TEE, it is guaranteed that Bi will get access to
the bequest. The release of the ciphertext can be delayed at
most by time τ assuming that testator A is not responsive.
Soundness. Since the bequest is a ciphertext encrypted
under pkBi

, another beneficiary, Bj will be able to decrypt
and learn the static secret bequest only if they break the
semantic security of the TEE’s encryption scheme.
Privacy. Privacy stems from the confidentiality property
of the data stored in the TEE. It is not enough, how-
ever, because it covers only on the privacy notion that
beneficiary will not be able to learn the content of its
intended cryptowill. From our definition of privacy, it is
also required that the beneficiary will not be able to tell if
there is an intended bequest for them or not. This privacy
notion is achieved due to the ”constant time” approach that
is taken in TEECW.Fulfill where no matter if there is a
cryptowill or not - the first message with the challenge sent
by the TEE is always the same and therefore beneficiary
Bi will not be able to tell the difference between a
challenge given to them in case there is indeed a cryptowill
and a challenge given to them if there is not.

A.2. Proof of Theorem 6.1

Correctness. Whenever beneficiary Bi learns the solu-
tion si of the TLP, i.e. si = Puzzle.Solve(Zi), they can
derive the corresponding child public key by computing
HD.Derive(pkBi , si). Due to the master public key property
of HD wallets, the beneficiary also knows the correspond-
ing secret key, hence capable of redeeming the bequest.
Soundness. Beneficiary Bi cannot redeem UTXO bj
corresponding to another beneficiary, for j 6= i.
If this is the case then it implies that beneficiary
can compute the discrete logarithm of the public key
HD.Derive(pkBj ,Puzzle.Solve(Zj)). This would mean that
beneficiary could compute discrete logarithms in the group
G, in which group by assumption the Discrete Logarithm
Assumption holds.
Privacy. If a beneficiary is able to tell whether they are
included in the will before death with probability better
than guessing, then that would mean, that beneficiary can
solve the TLP faster than τ .

Appendix B.
Threshold CW from Multi-authority CP-ABE

In this section, we sketch a solution for the static
asset bequeathing problem relying on Multi-authority
ciphertext-policy (CP) attribute-based encryption (ABE).
Background. For in-depth background on CP-ABE we
refer to [6]. At a high level and using the terminology
introduced in Section 3.1, in a CP-ABE system, a bene-
ficiary’s private key will be associated with an arbitrary
number of attributes expressed as strings. On the other
hand, when a testator encrypts a message in CP-ABE, they

specify an associated access structure over attributes. A
beneficiary will only be able to decrypt a ciphertext if that
beneficiary’s attributes pass through the ciphertexts access
structure. The Authority generates a secret master key
used to generate the beneficiary’s attribute-based secret
keys and a public key used to encrypt the bequest by
the testator. In a multi-authority scheme [21] there is
no central authority. Encryption is done using a set of
multiple public keys from relevant authorities. The scheme
requires the beneficiary’s keys, marked with some global
identifier, to satisfy an access matrix (instead of a vector).
We note that threshold assumption can be used either in
the attribute level or in the authorities level.
Event Death. We follow the line introduced in the paper
where death event is defined as the lack of digital presence
of the testator as measured by the mediators. In CP-
ABE, mediators are the authorities and digital presence
can be measured in terms of attributes. Concretely, the
testator may choose authorities to be ones that already
track their digital footprint, such as social media plat-
forms, i.e. Facebook, Twitter, Google and so on. Encoding
testator’s death is simply to define an attribute ”Testator
A is inactive for at least τ seconds”. This attribute can
be easily maintained and tested separately by each social
media operator authority based on the last time testator
checked-in. We are now ready to present the scheme in a
simplified form.

1) Before Death: This step corresponds to
CW.Setup,CW.KeyGen and CW.Create.
The Testator A creates a CW using social media
operators as authorities. It is important that each
beneficiary is registered with enough common
authorities, i.e. has Gmail account, Facebook
profile etc. Attributes will include the isAlive
predicate defined in Section 4.1 and attributes
that identify a specific beneficiary (i.e owner of
a given email address). Finally, cw is sent to all
beneficiaries.

2) After Death: At this point, a beneficiary Bi can
ask the authorities to generate her a secret key.
The secret key will be a function of the identity
attributes of Bi and the conditional isAlive of the
relevant testator. In case isAlive is false, which
corresponds to A not being active for some given
time, the generated key for the rightful Bi would
decrypt cw. Otherwise, decryption would fail.

We note that updating the cw is easily done by encrypting
a new cw.
Security. Correctness follows by inspection and due to
the way we defined event death. Soundness is guaranteed
from the security of CP-ABE scheme: An adversary that
can access a bequest not intended to them could break
the security game of CP-ABE as defined in [21]. Privacy
is achieved in the following sense: first, we note that the
mediators do not need to learn cw to generate the key for
the beneficiary. Thus, cw must be shared directly to all
beneficiaries. Since cw is basically an encryption under
this scheme there is no way for any beneficiary to tell
what is the plaintext bequest before decryption is made
possible.
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