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Abstract

We present a VDF protocol that incorporate challenging requirements from the Ethereum
ecosystem, which includes low-latency proof generation and VDF hardware that is both inexpensive
and secure in post-quantum settings. Our protocol utilizes an aggressively optimized iterative
algebraic transformation combined with the recent proof aggregation technique enabling the proof
latency overhead of only a few minutes over the primary computation. The protocol is currently
undergoing final scrutiny before entering the production stage at Ethereum 2.0.

1 Introduction

Distributed consensus protocols often require not only fast computations for efficiency, but also guar-
anteed slow computations for security. When we say guaranteed slow computations we mean that there
is a lower bound on the time the computation takes even if one has access to an unlimited number
of cores; i.e., the computation cannot be parallelized. Slow computations are required when a party
is supposed to produce an output that will eventually benefit some other participants, so that the
slowness of computation would guarantee unpredictability and thus fairness.

An example of this requirement in Ethereum 2.0 is the following. A group of 32 validators pro-
gressively builds a chain of collective randomness, with one value O generated per epoch E . This
randomness is used to select, for example, which validator can add a block onto the blockchain and
reap the rewards of doing so. If the randomness is unbiased then the frequency with which a validator
is selected depends on their stake in the system. However, if a malicious actor were to bias the random-
ness, then they can sample many different strings of randomness and select the one which benefits them
most. Currently the randomness O is given by the reveals from a RANDAO commit-reveal scheme
used to generate a random number where the commits are inputs produced by the validators during
E . However this commit-reveal scheme is biasable: a malicious validator that plays last can choose
whether or not to reveal and the result will be different based on their choice. To transform O into a
form of unbiasable randomness, one solution is to pass O through a verifiable delay function (VDF)
which is guaranteed to be slow to compute, such that all validators must choose whether to reveal or
not before they know the output of the VDF. Note that O can be evaluated by any VDF evaluator for
each epoch E . It is expected that the lowest execution time will be achieved on specialized hardware,
and such hardware should be available to the participants. Thus the challenge becomes how can we
build an efficient and secure VDF with affordable low-latency hardware?

A VDF is a tuple (F,Π) of function F and non-interactive protocol Π which works as follows: (1)
Prover runs F on challenge I and produces output O; (2) Prover engages in Π and produces a proof π
that F (I) = O; (3) Verifier obtains (I,O, π) and verifies π. To qualify for a VDF, the proof protocol
should be complete and sound, the proof should be succinct, non-malleable (to prevent manipulation
with the VDF output) and allow fast verification. A number of VDF constructions has been proposed
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in the recent past [LW17, Wes19, BBBF18, Pie19, FMPS19, EFKP20, LV20, DGMV20] with their own
advantages and limitations.

In this document we will first clarify what target properties we require from the VDF. We then
propose a delay function that is difficult to parallelise. Next we suggest a pre-quantum SNARK based
solution for making our delay function publicly verifiable such that anyone can quickly check that the
VDF is computed correctly without computed the function for themselves. Finally we consider how
to upgrade our proving system in the future after quantum attacks become feasible.

Our target

In addition to generic VDF properties as described above, a VDF protocol that solves the problem for
Ethereum 2.0 should additionally possess the following features:

• Tight latency bounds: the minimal time needed to compute the VDF with arbitrary paral-
lelism on modern hardware should be close to the best known algorithm to date.

• Minimum hardware: as a benign VDF computation brings no benefit to the executor, it
should as cheap as possible so that parties could afford it.

• Succinct proofs: the VDF outputs should be widely available to all Ethereum nodes, and their
verification should not expose a DoS attack vector.

• Quantum upgrade: when/if the quantum computers become powerful enough it should be
possible to switch to a post-quantum version of the protocol while retaining the deployed hard-
ware.

• Delay granularity: it should be possible to select the VDF expected running time with sufficient
precision in seconds.

While this is not am immediate requirement, we expect that the resulting protocol would suit a
large number of applications as well as other blockchains currently united as the VDF Alliance.

Our solution

Answering the challenges above, we present a VDF protocol called RootPack, which has latency bounds
with tightness factor 5, a 200 KiB proof computable on a small GPU cluster or ASIC with a few minutes
time increase, and so that the hardware can be still used in the post-quantum setting.

2 Requirements

At a high level, a protocol party, when outputting value O, also proves a statement of kind

I have spent at least t time to produce O.

It is not important how exactly O is computed but it is important that the parameter t be close, or
at least lower bound the actual time spent. The applications of VDF also yield separate requirements
for hardware (where it is implemented), security properties, and statement parameters, which are all
listed below.

A VDF was first formally defined by Boneh, Bonneau, Bünz and Fisch [BBBF18] as follows:

Definition 1 (Verifiable Delay Functions). A verifiable delay function (VDF) consists of the following
algorithms:

• Gen(1λ,∆)→ pp: The puzzle generation algorithm takes as input a security parameter 1λ and a
difficulty parameter ∆ and outputs public parameters pp which fix the domain X and range Y of
the puzzle and other information required to compute a puzzle or verify a puzzle solution
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• Eval(pp, x) → (y, π): The puzzle evaluation algorithm takes as input the public parameters pp,
an input from the domain x. It outputs a puzzle solution y and a proof π.

• Verify(pp, x, y, π) → 0/1: The puzzle verification algorithm takes as input the public parameters
pp, an input from the domain x, an input from the range y and a proof π. It outputs either 0 or
1.

Additionally, VDFs must satisfy the correctness, soundness and sequentiality definitions as defined
below.

Definition 2 (Correctness). A verifiable delay function is correct if ∀λ,∆, pp ← Gen(1λ,∆), and
∀x ∈ X if (y, π)← Eval(pp, x) then Verify(pp, x, y, π) = 1.

Definition 3 (Soundness). For soundness it is required that an adversary can not get a verifier to
accept an incorrect VDF solution.

Pr

[
Verify(pp, x, y, π) = 1 pp← Gen(1λ,∆)

y 6= Eval(pp, x) (x, y, π)← A(1λ,∆, pp)

]
≤ negl(λ)

VDF security is described using a sequentiality game played between a challenger and an adversary
where first the challenger sends the public parameter pp to the adversary. There is a pre-processing
phase where adversary A0 pre-processes the public-parameter and passes on an advice string z to
adversary A1. In the challenge phase, the challenger sends input x ∈ Y to A1. The adversary
A = (A0,A1) wins the game if it can output a correct VDF solution y and proof π for the input
x. The sequentiality guarantee is that no adversary A = (A0,A1) can win the above game with
probability greater than negl(λ) given A0 runs in total time O(poly(∆, λ)) and A1 runs in parallel time
polynomial in ∆ with at most polynomial in ∆ processors.

2.1 Delay statements

A delay statement is a statement of the form

delay(input, difficulty) == output

or equivalently
F (I, d) = O

where I and O are integer (tuples) and d is a non-negative integer. The difficulty parameter regulates
the execution time. We need certain delay granularity, i.e. the difficulty can vary with precision in
seconds. This naturally suggests that F is an iteration of some function f with sufficient granularity.
A single call to f is then declared the unit of difficulty d, with d ≈ 224 corresponding to 1 second for
our proposal. We restrict ourselves to delay statements with:

• 15 sec to 3 days delay range (228 ≤ d ≤ 242);

• 1 sec delay granularity – (d = 0 (mod 224)).

2.2 Delay hardware

The delay hardware is supposed to be a USB stick fitted with an ASIC implementing the VDF with
an additional requirement: every second an intermediate output is streamed to the host in real time.
As the hardware is not yet manufactured, it can be simulated by precomputing every about 224-th
round outputs and reading the appropriate output every 224 · 64 ns (≈ 1s).
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2.3 Delay proofs

Existing VDF constructions rely on a separate proof system that proves correctness of the VDF
computation and thus ensures the delay statement. Clearly, the security of VDF relies on the one of
the proof system. The following requirements are given:

1. First, a proof system should provide reasonable security level in a widely accepted security model.
A random oracle model is chosen for its simplicity and versatility. There are two flavours of it:
programmable and non-programmable ROM. The former assumes we can dynamically select RO
outputs in a simulation for the security proof, which simplifies the proof but formally contrasts
with real-world instantiations of RO with hash functions, whose functionality is pre-fixed. The
latter model is somewhat closer to the reality but such security proofs are not always available.
We thus prefer the non-programmable ROM but it is not a strong requirement. Regarding the
security level, at least 120 bits of security is required (possibly under additional assumptions on
some primitives used in the system).

2. Secondly, a proof of a delay statement, should be post-quantum secure. Concretely, no quantum
attacks should exist on underlying primitives, and additionally the security in the random oracle
model, if being employed, should translate to quantum oracles. More precisely, at least 80 bits of
provable soundness in a quantum random oracle model is required, with slight preference
for non-programmable one.

3. The proof should be compact. It is understood that the post-quantum security makes it difficult
to be truly succinct (e.g. a few kilobytes), but it should be possible to contain the proof into 200
kBytes.

4. The proof should be verified within very short time (succinct verification). Concretely, we
require at most 20ms verification time on a Raspberry Pi 4 Model B (single thread, no overclock-
ing).

2.4 Prover hardware system

We have a separate requirement to a potential prover hardware system. We expect it to be a prover
rig with prover software producing delay proofs for 1 ≤ u ≤ 8 always-active delay hardware units. The
requirement is to design and implement a prover system with

• Commodity hardware – the prover rig is built from off-the-shelf commodity hardware and
requires little assembly;

• Low latency – delay proofs are produced with a latency (relative to the delay function output
produced by the delay hardware) of:

– at most 10% of the delay time if d ≥ 236 (i.e. more than an hour);

– at most 20% of the delay time if d ≥ 232 (more than a few minutes);

– at most 40% of the delay time if d ≥ 228 (all other cases);

• Permissive licensing – the prover software is open-sourced under the Apache 2.0 license.

3 RootPack (MinRoot+SnarkPack) as an optimal design

We have considered three groups of VDF constructions:

• RSA-based VDF.[Wes19, Pie19] We rule out these promising designs due to the complicated and
error-prone setup procedure [CHI+20, DDK+21] and difficulty to upgrage the construction for
the post-quantum setting.
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• Isogeny-based VDF [FMPS19]. Again, this setup succumbs to quantum attacks. Moreover,
our internal estimate concludes that the existing construction require an unprecented memory
bandwidth in order to achieve the lowest latency.

• Verifiable computation (VC) based VDF [BBBF18]. In this setting we see a VDF computation
as a program whose correctness is asserted via a proof of knowledge(PoK). This construction
is the most attractive as we can use a pre-quantum proof system nowadays and switch to a
post-quantum proof at any time without compromising the setup. Additionally, most PoK
constructions admit succinct verifiers. The downside of the approach is that the prover cost can
be linear or even superlinear in the VDF computation, and the latency bounds on the prover
cost are much less tight, so that we have to make sure it is parallelizable enough to yield little
latency overhead.

The work closest to our proposed construction is the incremental verifiable computation (IVC) and
the verifiable computation-based VDFs approach from [BBBF18]. The ideas in our work are similar in
the sense that first we require a sequential function which is iteratively computed. And then for each
the computed iterations, the prover computes SNARK proofs to prove correctness. We propose using
SnarkPack to aggregate these proofs which are computed every iteration. We also propose an optimal
design where the sequential function, the proof system and the aggregation protocol work in tandem
to satisfy the VDF requirements as discussed in the previous section. Moreover, we provide realistic
performance estimates for our proposed constuction where an ASIC evaluates the VDF and the proof
work is done by GPUs.

Invertible VC-VDF In order to have delay granularity and to make the program description small,
we select F = fD for some function f and D being some integer that determines the delay. The function
f should be injective as otherwise any second preimage yields another VDF instance for free, which
we want to avoid. Thus the inverse f−1 exists. For the proof purpose it does not matter if we prove
F (I) = O or F−1(O) = I, and a prover can select the cheapest of the two. Thus it is convenient to
have f easily invertible such that a circuit for f−1 is smaller. On the other hand, not every possible
input I should be a valid input, as otherwise one can just start from arbitrary O in the faster backward
direction. With restricting the input the VDF flow is as follows:

1. Setup – Prover learns the input domain W and input density, i.e. the (approximate) fraction of
elements W that can be selected as a seed.

2. Start – Prover is given input predicate φ over W.

3. Computation – Prover selects I such that φ(I) = true. Then he computes O = F (I).

4. Proof – if χ(O) = true, Prover creates an IVC proof π and submits (I,O, π) to Verifier.

5. Verification – Verifier checks π.

MinRoot design There exist several candidates for f in the literature with VeeDo and Sloth++
[BBBF18] being the most prominent. In the core, both transform the state S to S′ so that the pair
satisfies a low-degree polynomial relation G(S, S′) = 0. In more details, the forward direction is some
inverse to a power function, where the exponent is selected to be an injective mapping. When p 6≡ 1
(mod 3) we have:

Sloth++ :(xi+1, yi+1)← (xi, yi)
(p2+1)/4︸ ︷︷ ︸

over Fp2

+ (c1, c2)

VeeDo :(xi+1, yi+1)← A · (x(2p−1)/3i , y
(2p−1)/3
i︸ ︷︷ ︸

both over Fp

) + (c1,i, c2,i)

5

https://github.com/starkware-libs/veedo/commits/cc08c65694e4f8921aac9e5e82e2035b37d2a49f/reference-code/delay_function.sage


xi yi

3
√

xi+1 yi+1

i

Figure 1: One round of MinRoot (cubic root version). Addition is in the field where the root is well
defined.

Here (xi, yi) is the state at i-th step. We have found a better alternative to both, with only one
exponentiation per round, which we call MinRoot (Figure 1):

MinRoot : (xi+1, yi+1)← ((xi + yi)
(2p−1)/3, xi) + (0, i) (1)

If we have p ≡ 1 (mod 3) but p 6≡ 1 (mod 5), which is the case for the primes which are prime group
orders of popular BLS12-381 and BN254 curves, we use the fifth root as (xi + yi)

(4p−3)/5.

Hardware comparison We first observe that VeeDo uses two parallelizable exponentiations per
round, whereas MinRoot does only one. Thus for the same delay time and same state size VeeDo
requires twice the hardware, whereas the smaller state would reduce the security against precomputa-
tion attacks. Note also that VeeDo needs additional storage for constants (or hardware that computes
those).

A comparison to Sloth++ is less straightforward. Assuming that both state elements in all designs
are l-bit primes, we get that MinRoot uses one exponentiation to an l-bit exponent, VeeDo uses two,
whereas Sloth++ computes a single 2l-bit exponentiation of a 2l-bit field element, which should yield
twice longer step at CPU or an ASIC circuit twice as large. On the other hand, a hardware of the
same size would imply twice smaller state, which succumbs to precomputation attacks. We conclude
that MinRoot is more efficient in terms of hardware.

Actual performance

We assume that to compute a root function one uses a window-based square-and-multiply algorithm,
which boils down to a sequence of modular multiplications. Our CPU benchmarks demonstrate that a
naive 256-bit exponentiation takes about 10000 ns. An optimized ASIC implementation will be faster
but given that at least 40 gates are needed for squaring [MOS20], 1µs is a reasonable estimate (i.e.
220 calls to f per second and 236 per day). A more conservative estimate would be to assume that the
entire squaring can be done within a nanosecond cycle, so that one second constitutes to 222 calls to
f . More precise estimates will be made during the proof-of-concept stage.

3.1 SnarkPack

Design

In order to minimize the additional latency incurred by a VC proof it is desirable to (1) parallelize it and
(2) start as early as possible. This makes the recursion schemes such as Halo [BDFG20] less suitable as
they are inherently sequential and rather expensive. Instead, we opt for the recent SnarkPack design,
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which combines the (fastest to-date) proofs [Gro16] with an aggregation protocol that can be efficiently
pipelined and also has high concrete performance.

The SnarkPack protocol [GMN21, BMM+21] operates as follows:

1. Split the VDF computation into R chunks:

F̂ (Si) = Si+1 (2)

with I = S0 and O = SR.

2. Prepare a Groth16 proof πi that (2) holds for each chunk.

3. Aggregate {Si, πi}i into a single proof πagg. The cost is O(R), the proof size and verification
time both are O(logR).

Assuming each chunk consists of D/R calls to f , the SnarkPack latency is O(D/R) + O(R), so that
all but one Groth16 proofs can be prepared while the VDF function is still computed. Note that a
trusted setup should be prepared for F̂ in the line of existing setup ceremonies.

Performance

Let us assume that a chunk lasts one minute, i.e. about 226 calls to f . We plant to use the BLS12-381
curve, so the root function should be x(4p−3)/5 and the inverse takes 3 constraints. Thus each MinRoot
chunk requires 227.5 constraints.

To understand the time it would take to prove such a large circuit, we can look at implementations
used in practice by projects such as Filecoin. One of the most common SNARKs used on the Filecoin
blockchain is a Proof-of-Replication proof, which requires the generation of 10 Groth16 proofs, each of
size approximately 130 million, for a total of ≈ 231 constraints. Recent benchmarks from the Filecoin
community suggest that this proof can be created in less than 4 minutes using a modern CPU and GPU
system, so our proof can be done in 15 seconds. A more conservative estimate (see above) with 228

calls to f per chunk would imply that a GPU prover would spend as much time as the VDF evaluator.
Since this VDF construction relies on generating many small proofs which are then aggregated, the
proving operation can be easily parallelized by adding more proving hardware, such as a system with
4 GPUs, or by distributing the individual proof generation work across multiple ‘workers’.

The aggregation is significantly cheaper and can be performed even on a single CPU for the entire
VDF. Our own benchmarks show that aggregating ` proofs with Bellperson library takes approximately
`/26 seconds, with the aggregated proof being 6 log ` KiB long and takes 10 log ` ms to verify. Therefore
a 3-day aggregated proof for 212 1-minute chunks takes about 1 minute to generate, is 72 KiB long,
and takes 0.1 sec to verify.

Quantum upgrade Even though the SnarkPack proof system is not quantum-resistant, there is no
way to shortcut the computation of function F on a quantum computer. Some attacks become less
expensive (see below) but not so significantly. Thus we can keep F and more importantly, the hardware
computing it, and change the proof system only when the time comes. Of the post-quantum proof sys-
tems available today, STARKs [BBHR18] and its relatives Aurora [BCR+19] and Fractal [COS20] are
suitable for this purpose. Concretely, we still prepare separate proofs for each chunk and then aggregate
them using possibly the same proof system. With recent advance in the FFT computation [BSCKL21],
the fact that the two proofs use different domains is no longer a problem.

3.2 Efficiency Improvements from Nova

The recently proposed Nova [KST21] proof-system, provides us an improvement over the Groth16
proofs. Nova does not require any FFTs for prover computation while also having the most optimal
verifier circuit. The verifier circuit is constant sized and the cost mainly comes from two group
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scalar multiplications. We implemented our invertible VC-VDFs over the Pasta curves [HBG20], with
our MinRoot function and the Nova proof-system. The ASIC estimate for this design is 1ns per
square/multiply. This means that the ASIC can takes 300ns per MinRoot iteration which gives us
3.3 million iterations/second. For the prover, each iteration is 3 constraints. To create a proof, a
prover performs 2 multi-scalar multiplication/multi-exponentiation (MSMs) the size of the number of
constraints. At 3.3 million iterations per second this is 2 MSMs of size 107 per second for 2 × 107

bases/second. We currently have GPU code that does 2 × 107 bases/second on a 384 bit curve and
this should go up to about 4 × 107 bases/second when we move to256-bit curves. This means that a
single GPU should be able to create SNARK proofs for 2 ASIC VDF evaluators.

4 Security of RootPack

4.1 Sequentiality (shortcut) attack

The sequentiality requirement to VDF exposes the primitive to a completely new class of attacks,
where an adversary is able to compute F faster than expected. We formalize this requirement in the
following definition.

Definition 4. A VDF protocol (F,Π) is (α,M, T )-sequential if there is an adversary that (a) computes
M calls to F before the Start step and (b) computes at most M calls to F within time T after the
Start step – produces a valid proof π with probability α.

We further say that a protocol has λ bits of sequential security if it is at most (M2−λ,M, l(F )/2)-
sequential, where l(F ) is the latency of F on common hardware. This means that after spending M
calls to F before and after the start of the protocol, the adversary still has at most M2−λ chance to
reduce the VDF computation cost by factor of 2.

Attack

A natural idea for a precomputation attack is to precompute some parts of F and then hope to meet
those at some step. However, due to the use of a counter, each part can be met at only a certain step
i. Assuming that the inverse of f costs only γ < 1 as much as the forward f , the attack proceeds as
follows.

1. Compute 2M
γ chains of inverses of f of length D/2 starting with i = D/2 and ending with i = 0.

2. Store results as W = {(I ′, O′)}.

3. When φ is known at the start phase, find M different values I such that φ(I) = true and see if
there is a match withW. If found then use the entry to reduce the computing time by the factor
2.

The chance to meet a precomputed chain in the online phase is
2M

γ︸︷︷︸
chains

· M︸︷︷︸
starts

2−2`︸︷︷︸
state size

, so F is at best

(
2M2

γ2−2`
,M, l(F )/2

)
-sequential. (3)

Let us estimate γ. We need 3 multiplications to compute x3, 5 mults to compute x5, and 1.25`
multiplications to compute either the cubic-root or the fifth root. Thus γ > 2` so the VDF has λ bits
of security for

`− log ` > λ

Thus we claim 110 bits of security for 128-bit primes and 240 bits of security for 256-bit primes.
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4.2 Algebraic attacks

Algebraic attacks aim to find a shortcut in computing F by exploiting its algebraic properties. In
order to speed up d rounds, i.e. computing fd one should be able to solve equations of form

f−d(I) = O (4)

for given I.
If (4) is multivariate, then the best generic technique is applying Groebner basis algorithms [CLO97,

Fau02]. These algorithms find a generating set for the ideal generated by (4) so that they can be solved
as univariate equations. Little is known about the actual complexity of Groebner basis algorithms, but
the available heuristic analysis suggests that it is exponential in d, thus quickly become impractical.
Even in the unlucky case when a Groebner basis can be found for the system of equations that describe
a VDF, we still face the problem of solving univariate equations for it.

Univariate equations over finite fields can be solved using Berlekamp or Cantor-Zassenhaus algo-
rithms. It is known [vzGG13] that an equation of degree r can be solved using O(r log p) operations
over elements of Fp. This should be compared with O(d log p) operations needed to compute fd. We
conclude that, unless fd has some structure that makes the univariate equations of its Groebner basis
of very low degree (at most 3

√
d), generic algebraic methods are not applicable even if f or f̂ has

univariate representation.

4.3 Latency bounds

Currently the fastest exponentiation xy algorithm that works with variable base is the windowing-
ladder algorithm [CP05]. In the nutshell it splits the exponent y into windows of bitlength k, precom-
putes powers of x, and then applies the square-and-multiply method. For the 256-bit exponent the
optimal k equals 5, which yields 256 squares and 66 multiplications. We are aware of no substantial
improvement to this bound.

Going further down, the modulo squaring itself has been the subject of latency analysis in various
models. For the gate depth model, the best available lower bounds [WW20] indicate that a squaring
modulo `-bit prime circuit has depth at least 2 log2(` − 1) − 2 log2(log2(` − 1) − 1) − 4, whereas the
concrete upper bounds yield circuits of depth smaller than 5 log2 ` [MOS20]. We consider this gap to
be small enough to prevent breakthroughs in circuit construction.

4.4 Quantum attacks

We also show that if we switch to a post-quantum proof system, the security of invertible VDF against
a quantum computer is high enough with our parameters. The precomputation attacks utilize multi-
target Grover’s finds a pre-image to one of k targets in time

√
N/k. The probability to find the

pre-image in t time grows as
fMG(k, t,N) = kt2/N (5)

according to [BHMT02].
We consider precomputation based attacks described as follows:

1. Apply F−1 (i.e. invert F ) to M/γ elements of W and create a proof for every inversion.

2. Store results as W = {(I,O, π)}.

3. When φ is known, check (using Grover’s search) if there is I such that (I, ∗, ∗) ∈ W and φ(I) =
true. If found then retrieve (O, π) from W.

We have to check each φ(I) = true individually so run Grover algorithm on the set W of targets in
the Computation phase, and in order to increase the attack probability we run M copies of Grover in
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parallel. Let us assume that a call to φ costs as much as a call to f , so we can run Grover for time
D/2. Then the chance to match any element of W can be derived from (5) as

PMG(β,D,N) =
M2D2

γ22−2l
(6)

Comparing to (3), and assuming that D < 240, we obtain that RootPack has λ bits of quantum security
as long as

`− log ` > λ+ 40.

Thus we get 70 bits of quantum security with 128-bit primes and 200 bits of security with 256-bit
primes.

Practicality of Quantum Search

Grover’s search is usually discussed for some oracle function f(·). However, several practical issues
need to be considered when a specific construction of f(·) is being considered. The work of Viamontes,
Markov and Hayes [VMH05] focuses on these issues. The first issue is that in order to query f(·)
in superposition, we need a quantum hardware implementation of f(·). While a quantum circuit is
usually similar in size to its classical counterpart, if the the circuit’s maximum depth exceeds

√
N then

the evaluation of f(·) is the more cost consuming part of searching a size N database. This would
diminish the quantum speedup by a considerable amount. Hence, to come up with resource estimates
for quantum attacks we first come up with the quantum circuits for the VDF candidates. We omit
the quantum circuits for brevity and keeping in mind the interests of the SBC audience. However, our
estimates suggest that quantum computers which have the order of 1000 qubits would be required to
make these attacks feasible. The state-of-art quantum machines have only reached 127-qubits [Bal21]
at the time of writing.

4.5 MIMC reduction

Here we provide an observation that relates the sequentiality of invertible VDFs to the security of
some well-known symmetric key primitives. For this we recall the MiMC bijective transformation over
F2
p [AGR+16]:

• Input (x, y) ∈ F2
p

• For 1 ≤ i ≤ R repeat:

1. (x, y)← (y+x3 + ci, x) where ci is a public constant that depends on i. In a keyed version,
a key is also added modp with ci.

The security of MiMC is based on the assumption that the resulting polynomial has large algebraic
degree and it has no compact representation. Despite the years of public scrutiny [ACG+19, EGL+20],
no counterargument to this assumption was found1. Computing Groebner basis has proven useless
either. This hints that as long as the function f in the VDF design resembles that of MiMC, we
should expect little to no algebraic structure in the polynomial describing the iteration of multiple
rounds, which in turn implies that these polynomials are kind of “generic” and “random-looking”.
Thus intuitively there should be no sequentiality shortcut as it should not be for random functions.

We note that this argument holds as long as the polynomial describing the iteration has degree 3.
It is known that certain quadratic polynomials yield short cycles and thus should not be used[VS04].

1There are certain cryptanalytic results for the binary field case and in the related key scenario, but they are irrelevant
for our purpose.
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5 Conclusion

We study and propose a new VDF protocol which satisfies the requirements for its use in Ethereum
2.0. We discuss the security and attacks possible on this protocol and provide estimates for an ASIC
implementation for this VDF evalution. While we did not find any attacks that would suggest any
crucial weaknesses in the protocol, we invite the VDF research community to scrutinize our work.
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reduction to zero (f 5). In Proceedings of the 2002 international symposium on Symbolic
and algebraic computation, pages 75–83, 2002.

[FMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay func-
tions from supersingular isogenies and pairings. In Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, pages 248–
277, 2019.

[GMN21] Nicolas Gailly, Mary Maller, and Anca Nitulescu. Snarkpack: Practical SNARK aggrega-
tion. IACR Cryptol. ePrint Arch., 2021:529, 2021.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT
(2), volume 9666 of Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

[HBG20] Daira Hopwood, Sean Bowe, and Jack Grigg. The pasta curves for halo 2 and beyond,
2020. https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/.

[KST21] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. IACR Cryptol. ePrint Arch., page 370, 2021.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. Fiat-shamir for repeated squaring with ap-
plications to ppad-hardness and vdfs. In Advances in Cryptology - CRYPTO 2020 - 40th
Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17-21, 2020, Proceedings, Part III, pages 632–651, 2020.

12

https://iacr.org/submit/files/slides/2021/rwc/rwc2021/9/slides.pdf
https://iacr.org/submit/files/slides/2021/rwc/rwc2021/9/slides.pdf
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond/


[LW17] Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. Int. J. Appl. Cryptogr., 3(4):330–343, 2017.

[MOS20] Ahmet Can Mert, Erdinc Ozturk, and Erkay Savas. Low-latency asic algorithms of mod-
ular squaring of large integers for vdf evaluation. Cryptology ePrint Archive, Report
2020/480, 2020. https://ia.cr/2020/480.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, volume 124 of LIPIcs,
pages 60:1–60:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[VMH05] George F. Viamontes, Igor L. Markov, and John P. Hayes. Is quantum search practical?
Comput. Sci. Eng., 7(3):62–70, 2005.

[VS04] Troy Vasiga and Jeffrey O. Shallit. On the iteration of certain quadratic maps over gf(p).
Discret. Math., 277(1-3):219–240, 2004.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 3rd edition, 2013.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In EUROCRYPT (3), volume
11478 of Lecture Notes in Computer Science, pages 379–407. Springer, 2019.

[WW20] Benjamin Wesolowski and Ryan Williams. Lower bounds for the depth of modular squar-
ing. Cryptology ePrint Archive, Report 2020/1461, 2020. https://ia.cr/2020/1461.

13

https://ia.cr/2020/480
https://ia.cr/2020/1461

	Introduction
	Requirements
	 Delay statements
	 Delay hardware
	 Delay proofs
	 Prover hardware system

	RootPack (MinRoot+SnarkPack) as an optimal design
	SnarkPack
	Efficiency Improvements from Nova

	Security of RootPack
	Sequentiality (shortcut) attack
	Algebraic attacks
	Latency bounds
	Quantum attacks
	MIMC reduction

	Conclusion

