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Abstract

Merkle-type trees are widely used to design cryptographic accumulators. The primary
advantage in using Merkle tree for accumulators is that they only assume existence of collision-
resistant hash functions. Merkle tree based accumulators produces constant size accumulation
values. But, the size of the witness is always logarithmic in the number of values accumulated,
opposed to the constant size witness as exhibited by some of the other popular accumulators
that uses number theoretic techniques and problems. Surprisingly, there exists no Merkle
tree based accumulator that provides a trade-off between accumulation size and witness size.
Such a trade-off is warranted, as argued in this paper, in a situation where witnesses are
stored in memory constrained devices and are being moved around continuously, as opposed
to the accumulation values that remain stationary, often in devices with moderate storage
capacity. In this paper we propose a Merkle-tree based accumulator scheme assuming only
collision-resistant hash functions exist. Our scheme allows witness of size that is in general
strictly less than logarithmic in the number of values accumulated, and in some cases reduces
to constant size. The trade-off cost results in an increased accumulation size.

1 Introduction

A basic cryptographic accumulator scheme (AC) facilitates optimal verification methods for set-
membership relations [BdM93, BP97]. Briefly, given a setX = {x1, . . . , xn}, anAC scheme simul-
taneously does the following tasks: (1) Accumulate: produces a short representation of X denoted
as AccX , and (2) Membership Witness Generation: for every x ∈ X, it produces an accompanying
short membership witness witx. Later, by exhibiting the valid tuple (x,witx,AccX), a prover can
convince any third party that x is indeed a member of a certain set whose short representation is
given by AccX . The immediate security requirement is that it should be computationally infeasi-
ble to find a valid pair (x∗,witx∗) for any x∗ /∈ X. Accumulator schemes that in addition support
non-membership witness proofs are called universal accumulators [LLX, CHKO12, BLL00]. In
particular, for a fixed domain M , and for any set X ⊆ M , a universal accumulator scheme can
produce both a membership witness for element x ∈ X and a non-membership witness for an
element x′ ∈M\X that are to be validated against the succinct representation AccX of X. Dy-
namic accumulators [CL02, Ngu05, DT08, CKS09, WWP08, CF13] are an extension that allows
computation of AccX′ using only AccX and x, where X ′ = X ∪ {x} (addition) or X ′ = X\{x}
(removal) and update existing witnesses accordingly, without the need to fully recompute these
values on each addition or removal.

Accumulators have proven to be a very strong mathematical tool with applications in a
variety of privacy preserving technologies such as efficient time-stamping [BdM93], accountable
certificate management [BLL00], authenticated dictionaries [GTH02]. Accumulators are also
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used as building block in anonymous credential systems and group signatures [Nyb96, Ngu05,
CKS09], ring signatures [DKNS04], redactable signatures [PS14], sanitizable signatures [CJ10],
P-homomorphic signatures [ABC+12], and Zerocoin [MGGR] (an extension of the cryptographic
currency Bitcoin), etc.

Building accumulator schemes whose security is based on cryptographic hardness assump-
tions that are both standard and minimal is an important goal in this area. Number theoretic
problems such as the strong RSA problem [BdM93, BP97], discrete logarithm problem variants
[Ngu05, DT08, CKS09, GOP+16, AN11], Paillier trapdoor permutation [WWP08], lattices and
others [LLNW16, JS15, CF13, TX03, Lip12] have been used to construct several accumulator
schemes. These schemes achieve better functionality and are compact i.e., they produce constant
accumulation size and witness size. But, on the other hand, these schemes are also limited by
the fact that the underlying assumptions are often non-standard and strong.

There exists a line of work that employ only collision-resistant hash functions to build secure
accumulator schemes [BLL00, BLL02, CHKO12, BC14]. Unlike number theoretic constructions,
these schemes do not require the accumulator manager to be trusted. But, a bottleneck for
these schemes is that they are no longer compact - there is an increase in witness size which
is logarithmic in the number of values accumulated. In this setting the schemes are designed
based on Merkle type trees (also called hash trees). A Merkle tree is a labeled tree, with the
leaves labeled by different values H(x), where x ∈ X and H is a collision-resistant hash function.
The labels of sibling nodes are hashed using H in order to compute the label associated to their
parent node, and so on and so forth, until a value for the root of the tree is obtained. The tree’s
root value is then defined as the accumulator value of the set of values associated to the leaves
of the tree. For example, given a set X = {x1, x2, x3, x4}, the short representation of X is the
value AccX = H

(
H
(
H(x1)‖H(x2))‖H(H(x3)‖H(x4)

))
. A witness witxi that an element xi has

in a set whose short representation is AccX is the set of O(log |X|) nodes along the Merkle tree
needed to trace the exact path from H(xi) to the root node.

1.1 Our Contributions

A typical straight forward application of accumulators is that they can be used to implement
membership testing systems such as authenticated dictionaries. The later system involve three
parties: a trusted source, an untrusted directory, and a user. The source defines a finite set
X ⊆ M of elements. A short representation AccX of X is published, and users can obtain it in
an authenticated manner. The directory maintains the sets {witx | x ∈ X} and {witx | x ∈M\X}.
The user performs membership queries on the set X of the type ”is element x in set X?”. To
experience faster response and avoid network latency, instead of contacting the source directly,
the users query the directory. The directory provides the user with a yes/no answer to the
query together with a witness witx, which yields a proof of the answer. The user then verifies
the proof based on x,witx, and AccX . Another typical membership testing system is the usual
plain authentication system where the parties involve are users and a resource carrying system
holding all user-credentials. The set X defines the collection of all user-identities. The resource
system stores AccX . Witnesses witx are distributed to each user x ∈ X. Later, in order to access
the resource system, a user can prove membership in X by revealing their identity x and the
witness witx. It is important to note that, in both applications, the witnesses are continuously
moved around, whereas the accumulation data AccX remains static. To instantiate these systems,
the number theoretic accumulators will prove to be a better choice then the simple Merkle tree
based accumulators. The later schemes will make these systems communication heavy due to
the increased witness sizes. An immediate question that can be asked here is that can we have
a Merkle tree based accumulator scheme that can trade accumulation size for witness size. An
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increase in accumulation size for such a trade-off scheme is tolerable given that the accumulation
data is static and is stored in devices that are not resource constrained. The decrease in witness
size on the other hand is welcome as witnesses are moved around continuously and often stored
in resource constrained devices such as smart cards.

To our best knowledge, there exists no Merkle tree based accumulator scheme that trades
accumulation size for witness size. In this paper, we propose a Merkle tree based accumulator
scheme that achieves the same. Our scheme allows witness size that is in general strictly smaller
than a size that is logarithmic in the number of values accumulated. This is achieved at a cost
that increases the accumulation size. The novelty of our construction is that it employs, for the
first time, a well known subset covering technique called subset difference method [NNL01] to
the setting of Merkle tree to achieve this tradeoff.

2 Preliminaries

Definition 1 (Collision-resistant Hash Family) A λ-bit hash function family is keyed func-
tion family Hλ = {Hk : {0, 1}∗ → {0, 1}λ}k∈K . The function family Hλ is said to be collision
resistant if, for every polynomial time adversaries A, there exists a negligible function negl(λ)
such that

P[k
$← K;x1, x2

$← A(k) | x1 6= x2 and Hk(x1) = Hk(x2)] ≤ negl(λ)

2.1 Merkle Trees

A tree is a simple, undirected, connected graph without cycles. We particularly consider rooted
trees, i.e., trees with a distinguished root node. The nodes adjacent to the root node are called
its children; each child can be considered, in turn, the root of a subtree. Children of the same
node are siblings of each other. Nodes that have no children are called leaves, and all other
nodes are called internal. A rooted tree is 2-regular or binary if each node is either a leaf or
possesses exactly two child nodes. The level/depth L of a node indicates its distance to the root,
where we assign level L = 0 to the root node. In this paper we focus on binary trees of constant
depth d, i.e., where all leaves have the same level L = d. We denote such a tree by BTd. We let
LN(BTd) denotes the set of all leaf nodes of BTd and its size is given by |LN(BTd)| = 2d. The
total number of nodes in BTd is 2d+1 − 1. We let N = 2d and label nodes of BTd using numbers
in 1, . . . , 2N − 1 as follows: the root node is labeled with 1, if parent is labeled with i then the
left child is labeled with 2i and the right child is labeled with 2i+ 1. We let vi denote the node
labeled with i, 1 ≤ i ≤ 2N−1; for example the root node is denoted by v1. For a node vi, sibl(vi)
denotes its sibling, parent(vi) denotes the parent node of vi, and child(vi) (when vi is a non-leaf
node) denotes a child node of vi.

For a node vi ∈ BTd, the subtree rooted at vi is denoted by Ti, and Si denotes the set of all
leaf nodes of Ti, i.e., Si = LN(Ti). For any vi, vj ∈ BTd, we let Ti,j denote the subtree Ti\Tj -
the subgraph obtained by taking away Tj from Ti, and subsequently Si,j = LN(Ti,j).

Definition 2 (BTd,M) Let M = {x0, . . . , x2d−1} and H : M ×M → M be a collision-resistant
hash function. A perfect full binary tree BTd is said to model M under H if leaf nodes of BTd
are set to the following values: vi = H(xi mod (2d)), 2d ≤ i ≤ 2d+1 − 1. The resulting tree will be
denoted by BTd,M .

Definition 3 (Merkle Tree) Let M = {x0, . . . , x2d−1} and H : M ×M → M be a collision-
resistant hash function. Let BTd,M models M under H. The BTd,M is said to be Merkle tree if
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the internal nodes of BTd,M are set recursively as follows

vi = H(v2i‖v2i+1), i = 2d − 1, . . . , 1

The resulting tree is denoted by MTd,M . For example, the Figure 1 represents MT3,M .

Definition 4 (Exact Path) Let u, u′ ∈ MTd,M be two distinct nodes such that u is an ancestor
of u′. The exact path from u′ to u, denoted as EPu′→u, is a sequence of nodes EPu′→u = (u`−1 =
u′, u`−2, . . . , u1, u0 = u) such that, for i = 1, . . . , `, ui−1 is a child of ui. For example, in Figure
1, the exact path EPv10→v1 = (v10, v5, v2, v1).

Definition 5 (Pseudo Path) For an exact path EPu′→u = (u`−1 = u′, u`−2, . . . , u1, u0 = u)
in MTd,M , its corresponding pseudo path, denoted as PPu′→u, is a sequence of nodes PPu′→u =
(v`−1, v`−2, . . . , v1) such that

H(. . . H(H(u`−1‖v`−1)‖v`−2)‖ . . . ‖v1) = u

For example, in Figure 1, the pseudo path PPv10→v1 = (v11, v4, v3).

v1 = H(v2‖v3)

v2 = H(v4‖v5)

v4 = H(v8‖v9)

v8 =
H(x0)

v9 =
H(x1)

v5 = H(v10‖v11)

v10 =
H(x2)

v11 =
H(x3)

v3 = H(v6‖v7)

v6 = H(v12‖v13)

v12 =
H(x4)

v13 =
H(x5)

v7 = H(v14‖v15)

v14 =
H(x6)

v15 =
H(x7)

Figure 1: Merkle Tree

Definition 6 (Steiner Tree) Let R ⊆ LN(BTd). The Steiner tree ST(R) induced by R on BTd
is a subgraph of BTd that only retains nodes and edges present on the exact paths from the root
node v1 to leaf nodes in R respective.

2.2 Subset Covering

The construction of our accumulator scheme uses a well known subset covering algorithm, called
subset difference (SD) method, due to Naor, Naor and Lotspiech (NNL) [NNL01]. In [NNL01],
a broadcast encryption was proposed using subset difference method. In the following we first
recall the concept of subset covering and then present the NNL subset difference method.

Definition 7 (Subset Covering) For a non-empty set M , a subset-cover algorithm defines a
collection of subsets S ⊆ 2M such that the following holds: for any R ⊆ M there exits a sub
collection CVR = {S1, . . . , Sm | Si ∈ S} that partition M\R, i.e.,

M\R = ∪Si∈CVRSi and Si ∩ Sj = φ for every Si, Sj ∈ CVR, i 6= j.
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2.2.1 Subset Difference [NNL01]: A Subset Covering Method

The subset difference method is given by the algorithms (SD.SetUp,SD.Cover):

• SD.SetUp(M) : The input to the algorithm is a set M = {x0, . . . , xN−1}, where N = 2d

and d ∈ N. It defines a collection of subsets S ⊆ 2M as follows:

– Construct a binary tree BTd of constant depth d. Assign elements of M to its leaf
nodes, i.e., for i in 2d ≤ i ≤ 2d+1 − 1, leaf node vi = xi mod (2d).

– Define S = {Si,j | (vi, vj ∈ BTd) ∧ (vi is an ancestor of vj)}, where Si,j = LN(Ti\Tj).

• SD.Cover(BTd, R) : This algorithm takes a set R ⊆ M as input and computes a cover
CVR ⊆ S for M\R i.e., CVR partitions M\R. The algorithm works iteratively: at each
stage it removes nodes from the Steiner tree STR induced by R while building CVR and
finally stops when the updated STR is left with only one node.

1. Set CVR = φ, the empty set.
2. Find two leaves vi, vj in STR such that the least common ancestor lca(vi, vj) of vi

and vj satisfies the following property: the set of leaf nodes of the subtree, rooted
at lca(vi, vj), does not contain any leaf node from STR other than vi, vj . Suppose
lca(vi, vj) = vt, where t ∈ [2N − 1]. Then v2t and v2t+1 are respectively the left and
the right child of vt.

2a. If v2t 6= vi, then update CVR = CVR ∪ {S2t,i}; likewise, if v2t+1 6= vj , update
CVR = CVR ∪ {S2t+1,j}.

2b. Update STR by removing all descendants of vt. The updated STR now has vt as
its leaf.

2c. Go to Step 2.

3. If STR is left with only one leaf, then do the following. Let vi be the leaf. STR is set
to v1, the root. Update CVR = CVR ∪ {S1,i}.

4. The algorithm stops by outputting the updated CVR.

Lemma 1 (Correctness [NNL01]) The sub-collection CVR, as described above, partitions
M\R, i.e., M\R = ∪Si,j∈CVRSi,j and Si,j ∩ Si′,j′ = φ for every Si,j , Si′,j′ ∈ CVR.

Lemma 2 (Covering Size [NNL01]) For any R ⊆ LN(BTd), the size of the covering set is
|CVR| ≤ 2r − 1, where r = |R|. Furthermore, if the set M is random, then the average number
of subsets in CVR is 1.25r.

In Figure 2 below, we depict a sample run of the subset difference method.

2.3 Cryptographic Accumulators

A static universal accumulator scheme allows to produce a short representation of a large set
X ⊆ M , called accumulator/accumulation of X and is denoted by AccX , subject to which the
scheme can also produce, for every x ∈ M , a witness witx attesting to the fact that x ∈ X or
x ∈M\X. Based on x, witx and AccX , anyone can later verify whether x ∈ X or x ∈M\X. We
now give a formal definition of a universal cryptographic accumulator scheme.

Definition 8 (Static Universal Accumulator Scheme) A static universal accumulator scheme
AC for a domain M is a tuple of PPT algorithms (Setup, Accumulate : P(M) → A, WitGen :
M × P(M)→ W , Verify : X ×W × A→ {mem, non-mem,⊥}, where P(M) = {X | X ⊆M} is
the power set of M , A is the domain for accumulation values, and W is the domain for witnesses.
The algorithms work as follows.
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v1

v2

v4

v8 = x0 v9 = x1

v5

v10 = x2 v11 = x3

v3

v6

v12 = x4 v13 = x5

v7

v14 = x6 v15 = x7

Figure 2: Subset Difference Method: For M = {x0, . . . , x7}, BT3 is constructed. For every i
in 1 ≤ i ≤ 15, the node with label i is denoted by vi. The elements in M are assigned to leaf nodes
as discussed above. Take R = {v8, v11, u13, v14}. Then, the Steiner tree STR induced by R is given by
color-filled nodes. The covering set CVR is constructed iteratively as follows. Consider a pair of leaf nodes
(v8, v11) in STR. The lca(v8, v11) = v2 and the subtree (of STR) rooted at v2 has no leaf nodes from
STR other than v8, v11. For the children v4, v5 of v2, the CVR is set to CVR = {S4,8, S5,11}. The STR is
updated by removing all descendants of v2 and making it a leaf node. Next, for (v13, v14), similarly S6,13

and S7,14 are added to CVR and making v3 a leaf node for STR. The updated STR is now left with leaf
nodes v2, v3 and the root v1. Step 2 of SD.Cover(BTd, R) finally updates STR such that it is left with only
v1. The cover is finally given by CVR = {S4,8, S5,11, S6,13, S7,14}.

• Setup(1λ): This algorithm is run by the accumulation manager. It takes as input a security
parameter 1λ, and the domain set M . The algorithm outputs an auxiliary information
auxM . The auxM will be an implicit input to both Accumulate and WitGen.
• Accumulate(X, auxM ): This algorithm is run by the accumulator manager. It takes as

input a set X ⊆ M and produces a succinct representation AccX of X, also called the
accumulation of X.
• WitGen(x,X, auxM ): This algorithm is run by the accumulation manager. It takes as input

an element x ∈M , a set X ⊆M and produces a witness witx ∈W .
• Verify(x,wx, c): This algorithm is run by any third party. It takes as input an element x ∈
M , a witness witx, and an accumulation value AccX , and it outputs“mem/non-mem/⊥”.

Definition 9 (Correctness) The correctness of a universal accumulator scheme requires that

for valid auxM
$← Setup(1λ), X ⊆M , and x ∈M , the following holds true:

Verify(x,WitGen(x,X, auxM ),Accumulate(X, auxM )) =


mem, if x ∈ X
non-mem, if x ∈M\X
⊥, otherwise

Definition 10 (Security) A universal accumulator scheme is called secure if, for all domain
sets M , all λ ∈ N, and for all polynomial time (in λ) adversaries A, there exists a negligible
function negl(λ) such that:

P[auxM ,← Setup(1λ); (X∗, x∗ ∈M,witx∗ ,wit′x∗)← A(auxM ) | Verify(x∗,witx∗ ,AccX∗)

= mem ∧ Verify(x∗,wit′x∗ ,AccX∗) = non-mem] ≤ negl(λ). (1)

where the probability P[·] is computed over the randomness of the algorithms.
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3 A Universal Accumulator Scheme via Subset Difference Method

We now present our scheme. The parameters of our scheme involves:

• a security parameter λ ∈ N;
• a message set M = {x0, . . . , xN−1} (we assume N = 2d for some d ∈ N);
• a family Hλ = {Hk : {0, 1}∗ → {0, 1}λ} of λ-secure collision-resistant hash functions;

The scheme is described as follows:

• SetUp(1λ): Given λ and M = {x0, . . . , xN−1} as inputs, it proceeds as follows:

– Sample a λ-secure collision-resistant hash function H = Hk : {0, 1}∗ → {0, 1}λ ∈ Hλ.

– Build a binary tree BTd,M modelling M under H (see Definition 2).

– Turn BTd,M into Merkle tree MTd,M (see Definition 3).

– The algorithm sets auxiliary information auxM
1 to MTd,M and H. The auxM will be

an implicit input to both Accumulate and WitGen algorithms.

• Accumulate(X ⊆M, auxM ): For an arbitrary set X ⊆M , its accumulation value AccX is
generated as follows:

– Let X = {xj0 , . . . , xjt−1} for some j0, . . . , jt−1 ∈ {0, . . . , N − 1}. Using aux, find ik
in 2d ≤ ik ≤ 2d+1 − 1 (k = 0, . . . , t − 1) such that vik = H(xjk) ∈ LN(BTd,M ),
k = 0, . . . , t− 1. Set X ′ = {vi0 , . . . , vit−1} and R′ = LN(BTd,M )\X ′.

– Run subset cover algorithm (§ 2.2.1) SD.Cover(BTd,Ms, R
′) on R′ to obtain CVR′ .

Suppose CVR′ = {Si1,j1 , . . . , Sir,jr}. Set Index(CVR′) =
{

(i1, j1), . . . , (ir, jr)
}

. Clearly,
1 ≤ ik, jk ≤ 2N − 1 for 1 ≤ k ≤ r.

– For each (ik, jk) ∈ Index(CVR′), get vik , vjk (with the associated values) from the
Merkle tree MTd,M .

– Finally, the accumulation of X is set to:

AccX =
{

Mem = (vi1 , . . . , vir),Non-Mem = (vj1 , . . . , vjr)
}
.

• WitGen(x ∈M,X ⊆M,AccX , auxM ): On input x ∈M , it computes a witness as follows.

– (Case 1) x ∈ X: In this case, a membership witness is issued as follows. As CVR′

partitions X ′, there exists a unique (i, j) ∈ Index(CVR′) for which Si,j has a leaf node
vν = H(x), where 2d ≤ ν < 2d+1. The membership witness is set to the pseudo path
from vν to vi as follows:

1The auxiliary information is to be stored by the accumulator manager who issues accumulator values and
generates membership witnesses. The aux is not used to verify correctness of accumulation values nor to check
the validity of membership witnesses.
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witx = PPvν→vi =
((

sibl(vν), (−1)lblsibl(vν
)
,
(
sibl(prnt(vν)), (−1)lblsibl(prnt(vν ))

)
,(

sibl(prnt(prnt(vν))), (−1)lblsibl(prnt(prnt(vν )))
)
, . . . ,

(
ncvν (vi), (−1)lblncvν (vi)

))
,

where ncvν (vi) is the children of vi which is not on the exact path from vi to vν , and
lblv denotes the label of the node v.

– (Case2) x ∈M\X: In this case a non-membership witness is issued as follows. There
exists a unique Si,j ∈ CVR′ such that Tj has the leaf node vν = H(x), where 2d ≤ ν <
2d+1 and LN(Tj) ∩ X ′ = φ. The non-membership witness is set to the pseudo path
from vν to vj as follows:

witx = PPvν→vj =
((

sibl(vν), (−1)lblsibl(vν
)
,
(
sibl(prnt(vν)), (−1)lblsibl(prnt(vν ))

)
,(

sibl(prnt(prnt(vν))), (−1)lblsibl(prnt(prnt(vν )))
)
, . . . ,

(
ncvν (vj), (−1)

lblncvν (vj)
))
,

where ncvν (vj) is the children of vj which is not on the path from vj to vν , and lblv
denotes the label of the node v.

• Verify(x,witx,AccX): Suppose, witx =
(

(vθ` , τ`), (vθ`−1
, τ`−1), . . . , (vθ1 , τ1)

)
, ` ≤ d. The

verification algorithm proceeds as follows: Let V` = H(x). It computes the exact path
from V` to a node in Mem/Non-Mem as follows. Recursively compute Vi’s, i = `− 1, . . . , 0,
the internal nodes on the exact path from V` to this node as follows:

Vi =

{
H(Vi+1, vθi+1

) τi+1 = −1
H(vθi+1

, Vi+1) τi+1 = 1

Thus, EPV`→V0 = (V`, V`−1, . . . , V1, V0). The algorithm finally outputs “mem”/“non-mem”/“⊥”
as follows:

– Case 1: V0 = vik ∈ mem for some k in 1 ≤ k ≤ r.

Output =

{
⊥, if ∃ an η in 1 ≤ η ≤ `− 1 with Vη ∈ non-mem

mem, otherwise
(2)

– Case 2: V0 = vjk ∈ non-mem for some k in 1 ≤ k ≤ r.

Output =

{
⊥, if ∃ an η in 1 ≤ η ≤ `− 1 with Vη ∈ mem

non-mem, otherwise
(3)

– Output ⊥, otherwise.

A toy example describing an instance of our scheme is discussed in Figure 3.

3.1 Security

Theorem 1 For all domain sets M , all λ ∈ N, and for all polynomial time (in λ) adversaries
A, there exists a negligible function negl(λ) such that:

P[auxM ,← Setup(1λ); (X∗ ⊆M,x∗ ∈M,witx∗ ,wit′x∗)← A(auxM ) | Verify(x∗,witx∗ ,AccX∗)

= mem ∧ Verify(x∗,wit′x∗ ,AccX∗) = non-mem] ≤ negl(λ).

where the probability P[·] is computed over randomness in the Setup algorithm.
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v1 = H(v2‖v3)

v2 = H(v4‖v5)

v4 = H(v8‖v9)

v8 =
H(x0)

v9 =
H(x1)

v5 = H(v10‖v11)

v10 =
H(x2)

v11 =
H(x3)

v3 = H(v6‖v7)

v6 = H(v12‖v13)

v12 =
H(x4)

v13 =
H(x5)

v7 = H(v14‖v15)

v14 =
H(x6)

v15 =
H(x7)

Figure 3: A Toy Example: (1) SetUp: For M = {x0, . . . , x7}, construct the Merkle tree MTd,M under
H as above. (2) Accumulate: Let X = {x1, x2, x6, x7}. Compute R′ = LN(BT3)\X ′ = {v8, v11, v12, v13},
where X ′ = {H(x) | x ∈ X}. The color filled nodes denote the Steiner tree STR′ induced by R′.
Run SD.Cover(BT3, R

′) to obtain CVR′ = {S4,8, S5,11, S3,6}. The accumulation of X is set to AccX =
{Mem = (v4, v5, v3),Non-Mem = (v8, v11, v6)}. (3) WitGen: Membership witnesses to x1, x2, x6 and x7
are given by witx1

=
(
v8, (−1)8

)
, witx2

=
(
v11, (−1)11

)
, witx6

=
(
(v15, (−1)15), (v6, (−1)6)

)
and witx7

=(
(v14, (−1)14), (v6, (−1)6)

)
respectively. Non-membership witness to x0, x3, x4, x5 are given by witx0

=(
v8
)
, witx3

=
(
v11
)
, witx4

=
(
v13, (−1)13

)
and witx5

=
(
v12, (−1)12

)
respectively. Note that, all witnesses

are strictly smaller than the logarithmic height d = 3. (4) Verify: On input (x1,witx1 = (v8, 1), the
verification step outputs mem by checking that H(v8, H(x1)) = H(v8, v9) = v4 ∈ mem and EPv9→v4 =
(v9, v4) has no internal nodes on it from Non-Mem. Similarly, Verify(x6,witx6

= ((v15,−1), (v6, 1)))
outputs mem as H(v6, H(H(x6), v15)) = H(v6, H(v14, v15)) = H(v6, v7) = v3 ∈ Mem and EPv14→v3 =
(v14, v7, v3) has not internal nodes coming from Non-Mem. Where as, Verify(x4,witx4

= (v13, (−1)13))
outputs non-mem as H(H(x4), v13) = H(v12, v13) = v6 ∈ Non-Mem and EPv12→v6 = (v12, v6) has no
internal nodes on it from Mem. Similarly, Verify(x0,witx0 = (v8)) outputs non-mem as H(x0) = v8 ∈
Non-Mem.

Proof: An immediate way to attack the scheme is when the adversary can find a pair of elements
x1, x2 ∈ M such that H(x1) = H(x2). It can then choose an X∗ ⊆ M such that x1 ∈ X∗ and
x2 ∈M\X∗. It finally sets x∗ = x1, membership witness witx∗ to the membership witness witx1
for x1, and non-membership witness wit′x∗ to the non-membership witness witx2 for x2. Clearly,
Verifiy(x∗,witx∗ ,AccX∗) = Verifiy(x1,witx1 ,AccX∗) = mem, and Verify(x∗,wit′x∗ ,AccX∗) = Verify
(x1,witx2 ,AccX∗) = non-mem. But the probability that adversary can find such a collision is
negligible due the collision resistant property of the underlying hash family. Therefore, except
a negligible probability, we assume that for every x1, x2 ∈ M , x1 6= x2 implies H(x1) 6= H(x2).
We now show that, for any x ∈ M , X ⊆ M , an adversary cannot simultaneously produce both
membership and non-membership witnesses. The proof below considers the following two cases.

Case1: Assume x ∈ X. Thus H(x) ∈ X ′. As CVR′ partition X ′, there exists a unique
Si,j ∈ CVR′ such that H(x) ∈ Si,j = LN(Ti\Tj). Therefore a valid membership witness for
x exists and it is equal to PPH(x)→vi , where vi is the root node for subtree Ti (see Figure 4).
We now show that a non-membership witness for x cannot be issued simultaneously. Assuming
otherwise, let wit′x be such that Verify(x,wit′x,AccX) = non-mem. This implies wit′x = PPH(x)→vk ,
where vk ∈ Non-Mem and EPH(x)→vk doesn’t have any internal node belonging to Mem. Clearly,
k |> i. Therefore k ≤ i. But, this implies that the exact path EPH(x)→vk , computed using
PPH(x)→vk , must contain vi as an internal node. This is true as H(x) is a leaf node of Ti. This
is a contradiction as vi ∈ Mem and therefore Verify(x,wit′x,AccX) will output ⊥.

Case2: Assume x ∈M\X. There exists a unique Si,j ∈ CVR′ such that H(x) is the leaf node
of Tj and LN(Tj)∩X ′ = φ. Therefore a valid non-membership witness for x exists and it is equal
to PPH(x)→vj , where vj is the root node for subtree Tj . We now show that a membership witness
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Figure 4: Case1

for x cannot be issued simultaneously. Assuming otherwise, let witx be a membership witness for
x. This implies witx = PPH(x)→vk , where vk ∈ Mem and the exact path EPH(x)→vk doesn’t have
any internal node belonging to Non-Mem. Clearly, k = i will not work. For any other choice,
k |≥ j as LN(Tj) ∩X ′ = φ. Therefore k < j. But, this implies that the exact path EPH(x)→vk ,
computed using PPH(x)→vk , must contain vj as an internal node. This is true as H(x) is a leaf
node of Tj . This is a contradiction as vj ∈ Non-Mem and therefore Verify(x,witx,AccX) will
output ⊥.

3.2 Efficiency

The primary motivation behind this work is to find a way that takes us beyond the logarithmic
size bottleneck for witnesses, a typical for Merkle tree based accumulator schemes. First, unlike
the existing Merkle tree based schemes, we have elements admitting different witness sizes. In
particular, assuming AccX =

{
Mem = (vi1 , . . . , vir),Non-Mem = (vj1 , . . . , vjr)

}
, all members

in X ∩ Sik,jk admit witnesses of size d − r, where 2r ≤ ik ≤ 2r+1 − 1. Similarly, the witness
size for non-members under Tjk is d − s < d − r, where 2s ≤ jk ≤ 2s+1 − 1. Clearly, Max =
max{size(witx) | x ∈M} < d. For Sik,jk , closer the node vik is to the root, greater is the witness
size for members in Si,j . The node vik gets closer to the root only if the portion X ∩ Sik,jk is
contiguous. For randomly selected X ⊆ M , the probability is exponentially low for X to have
larger contiguous subsets. Smaller contiguous subsets X ∩ Sik,jk lead to near constant witness
sizes for members in Sik,jk . However, the decrease in witness size is achieved at a cost that affects
accumulation size. As noted in Theorem 2, for a random set X of size r, the number of sets in
CVR′ is roughly 1.25r, which implies |AccX | = |Mem|+ |Non-Mem| ≈ 2.5r. One might conclude
if this is worse than that of a trivial solution for accumulators, i.e., for X = {x1, . . . , xn}, set
AccX = {H(x1), . . . ,H(xn)}; and identities themselves constitute witnesses. But, this trivial
solution works for accumulators that only output membership witnesses. If this trivial solution
is to be extended for a universal accumulator, the accumulation size will directly depend on
|M | (AccX = {H(x) | x ∈ X} ∪ {H(x) | x ∈ M\X}) and not on X, and therefore not work.
Also, in addition, one discards the trivial solution as it doesn’t go well in keeping basic privacy
properties. For example, the trivial system reveals the size of X, and also AccX is vulnerable to
offline dictionary attacks as it holds H(x)’s as it is.
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4 Conclusions

In this work, we have proposed a Merkle tree based static universal accumulator scheme as-
suming only collision-resistant hash functions exists. Our scheme achieves a tradeoff between
accumulation size and witness size. Such a tradeoff for Merkle tree based accumulators was not
known to exist earlier. The proposed scheme used a well known subset covering technique called
the Subset Difference method to the setting of Merkle trees to achieve this tradeoff. We found
that the problem of achieving a trade off between accumulation and witness size is not easy. We
consider our proposed solution to be a stepping stone in this direction for a better tradeoff.
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