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Abstract

In this work, we study and formalize security notions for algorithm substitution attacks
(ASAs) on cryptographic puzzles. Puzzles are difficult problems that require an investment of
computation, memory, or some other related resource. They are heavily used as a building
block for the consensus networks used by cryptocurrencies. These include primitives such as
proof-of-work, proof-of-space, and verifiable delay functions (VDFs). Due to economies of scale,
these networks increasingly rely on a small number of companies to construct opaque hardware
or software (e.g., GPU or FPGA images): this dependency raises concerns about cryptographic
subversion. Unlike the algorithms considered by previous ASAs, cryptographic puzzles do not
rely on secret keys and thus enable a very different set of attacks. We first explore the threat
model for these systems and then propose concrete attacks that (1) selectively reduce a victim’s
solving capability (e.g., hashrate) and (2) exfiltrate puzzle solutions to an attacker. We then
propose defenses, several of which can be applied to existing cryptocurrency hardware with
minimal changes. We also find that mining devices for many major proof-of-work cryptocurren-
cies already demonstrate errors exactly how a potentially subverted device would. Given that
these attacks are relevant to all proof of work cryptocurrencies that have a combined market
capitalization of around a few hundred billion dollars (2022), we recommend that all vulnerable
mining protocols consider making the suggested adaptations today.

1 Introduction

Security for cryptographic systems depends on the existence of a trusted implementation. Un-
fortunately, recent experience shows that implementers cannot always be trusted. Examples of
cryptographic subversion are increasingly common, ranging from backdoors in cryptocurrency wal-
lets [1, 2] to software packages [3] and smart contracts [4]. In several famous examples, highly-
motivated attackers surreptitiously modified the implementation of cryptographic algorithms as a
means to subvert the operation of security systems that depend on them [5, 6, 7]. In the research
literature such attacks are known as algorithm substitution attacks (ASAs) and have been the sub-
ject of much formal study [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In an algorithm substitution
attack, an attacker modifies a cryptographic implementation to replace a cryptographic algorithm
or protocol with an adversarial replacement. The subverted device is then adopted by an honest
user who is unaware of the substitution.

Cryptographic Puzzles. Cryptographic puzzles are difficult problems that require an investment
of computation, memory or some other related resource [19]. Puzzles were originally proposed
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for spam prevention or avoidance of DoS attacks [20] but have more recently been adopted by
cryptocurrencies such as Bitcoin, Ethereum, Chia and Filecoin for the purpose of mining, i.e.,
achieving consensus and minting new coins [21, 22]. In each of these systems, solvers reap substantial
economic rewards from solving puzzles. The dark side of this arrangement is that these financial
incentives provide strong motivation for the development of sophisticated attacks [23]. 1

In this work we consider the problem of implementing and mitigating ASAs against crypto-
graphic puzzle-solving hardware and software. The field of cryptocurrency mining is uniquely
vulnerable to these attacks due to the fact that nearly all popular mining hardware (and much
software) is manufactured by a small number of companies, and that many of these companies also
operate their own competing mining operations (see figure 4) [25, 26]. Cryptographic puzzle algo-
rithms are also significantly different from the algorithms considered in previous work on ASAs,
and therefore support both different attacks and defenses. Most notably, cryptographic puzzles
typically do not make use of secret keys. Hence both the attacker goals and defenses must neces-
sarily be quite different. Rather than exfiltrating secret keys, adversaries are instead motivated to
devise attack strategies that improve their own ability to extract profits or consensus control over a
cryptocurrency network, for example, by selectively reducing the solving-rate of the victim’s hard-
ware or extracting puzzle solutions. The elegant work of Russell et al. [17] also discusses related
problems, but focuses on correcting subverted hash functions (random oracles), with applications
to proof-of-work. One important question we address is: how does an adversary use, and benefit
from, these subversions in the first place? We focus on a different primitive that in some cases
may also be built from hash functions, but we also address puzzle functions that are built from
alternative components, including VDFs.

Attack setting: cryptocurrency mining. While ASAs can be applied to any application of
puzzles, in this work we focus primarily on the setting of cryptocurrency mining. These operations
typically use large collections of puzzle-solving devices to evaluate solutions, and thus mine new
blocks in a cryptocurrency network. For many proof-of-work networks like Bitcoin, the most popular
mining device (and possibly the only profitable ones) are specialized mining ASICs (Application-
Specific Integrated Circuits) that are typically purchased inside an enclosure. Other systems rely
on FPGA or GPU devices that use specialized implementations [27]: while these implementations
can technically be reviewed by experts, the cost of these specialized reviews is often prohibitive. In
addition to purchase price of the hardware and software, the potential victim must also contribute
substantial resources in the form of electricity (for proof-of-work) or other resources such as RAM or
hard disk drives (for memory-hard proof-of-work [28] and proof-of-space constructions [24, 29, 30].)

Mining operations can be organized in various configurations, which we consider in this work:

Individual mining. In the most traditional setting, a cryptocurrency node operated by the miner
obtains puzzle instances by running the cryptocurrency network’s software on a computer: the
software then presents these instances to the possibly-subverted mining devices for solving.
In this setting we make the optimistic assumption that the cryptocurrency node’s software
operates as expected, and only the specialized mining devices are subverted. The challenge
for a subversion attacker in this setting is that a remote attacker may not have direct access to
send and receive messages to/from the subverted devices: all communication with the device

1While some examples of cryptographic puzzles such as proof-of-work have historically had negative environmental
impact through extremely high energy consumption, not all [24] cryptographic puzzles share this downside.
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must be in the form of correctly-structured puzzle inputs and solutions that pass through the
cryptocurrency network.

Pool mining. While the above setting is popular, it is not the only setting in which mining
hardware is used. A second popular configuration allows mining devices to participate in a
mining pool with many other miners [31]. Mining pools allow miners to distribute the risk of
mining operations, improving the predictability of mining rewards. A significant feature of
this setting is that the miner (or the device itself) receives puzzle instances from a central pool
coordinator: pessimistically, this coordinator may collude with the subversion attacker. This
latter setting can greatly increase the attacker’s freedom to communicate with the subverted
devices, since the attacker need not filter communications via the cryptocurrency network.

Definitions, attacks and defenses. The challenge in an ASA is to subvert a cryptographic
implementation in a manner that the victim cannot easily detect. To this end, previous ASA
definitions [32, 9] require that the subverted algorithm’s behavior should remain cryptographically
indistinguishable from that of the real one, either prior to the initiation of an attack or even (in
some stronger definitions) while the attack is ongoing [16, 33]. At the same time, an attacker with
knowledge of the subversion algorithm must execute practical attacks against the device. These
requirements are somewhat contradictory, however, since they imply that a successful attack must
produce useful real-world consequences while also producing no effects that a victim can detect.

Most previous work on ASAs avoids this contradiction by carefully limiting the scope of the
model: in these works the attacker’s purpose is typically the exfiltration of cryptographic secrets.
In real-world settings, the theft of a useful secret key will often result in side effects that can
be detected (such as the creation of forged certificates or intercepted communications). However
classical ASA definitions typically leave such side effects “outside the model”. By contrast, puzzle-
solving devices have no long-term cryptographic secrets to steal: the attacker’s goal in our setting
is primarily to hijack the power of the puzzle-solving device. The attacker can achieve this either
by diverting a portion of the device’s solving power towards the attacker, or simply by reducing
the device’s effectiveness. These different goals require deeper consideration. A key aspect of the
attacks we propose and study is that the loss of puzzle-solving ability has consequences that a
sufficiently observant defender may notice. Our definitions address this in two ways: first, we
require that subverted devices be indistinguishable from honest ones at least prior to the initiation
of an attack by a remote subversion attacker (in some previous works, this is called the offline case.)
Within our framework, we further consider the extent to which a defender can detect an ongoing
attack solely due to measurements of puzzle-solving ability (the “online” case.) From a definitional
perspective, modeling these effects requires that we extend previous ASA notions to incorporate a
notion of time or resource usage.

Using this definitional framework for our analysis, we find that in many existing networks,
subversion attacks can run for an extended period before any defender can be confident that an
attack is underway. Moreover, real-world devices have various features that can make such attacks
even more difficult to detect. For example, popular ASIC-based puzzle-solving devices routinely
produce unexplained hardware failures on a small fraction of inputs. While these errors are most
likely due to overheating and manufacturing errors, they are also precisely the symptom one might
expect from a subverted device.2 These findings motivate better techniques to detect and prevent
subversion attacks in deployed systems.

2See Appendix B for examples.
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Our contributions. More concretely, our contributions are as follows:

• We provide a simplified and general definition of cryptographic puzzles that suffices to analyze
ASA attacks on real-world examples of cryptographic puzzles such as proof-of-work, verifiable
delay functions and proof of space protocols.

• We formalize security notions for algorithm-substitution attacks (ASAs) on cryptographic
puzzle schemes. We next analyze which attacks succeed in the real-world. Furthermore, we
extend previous ASA definitions to our setting by considering oracles that allow timing and
resource usage of operations to be reported.

• We devise realistic threat models under which we propose two different algorithm-substitution
attacks on cryptographic puzzles. These include load-shedding attacks, which affects puzzle
solving abilities of subverted devices on an unpredictable set of subverted inputs set by the
attacker, as well as leeching attacks in which a subverted device exfiltrates puzzle solutions to
an attacker.

• Using our framework, we provide concrete estimates for attack success probabilities and costs
for the Bitcoin network. Since, this is the most widely-deployed application of cryptographic
puzzles in the real world. We demonstrate how such an attacker can benefit from these two
algorithm-substitution attacks when deployed against Bitcoin’s proof-of-work mining.

• Finally, we provide countermeasures that, if appropriately utilized, render many of our pro-
posed attacks ineffective. These countermeasures to protect existing proof-of-work implemen-
tations and a masking protocol for Pietrzak’s VDF construction can be instantiated with no
changes to the underlying puzzle or consensus networks and at a minimal cost.

• We implement one of our proposed countermeasures, an efficient masking protocol for the
Pietrzak repeating-squaring VDFs. The resulting overhead is a miniscule fraction of the
VDF evaluation time.

1.1 Technical Overview

In this work we focus on subversion attacks for cryptographic puzzles. We use the term puzzle
to generalize a wide variety of schemes with the following structure: a puzzle solving algorithm
draws in puzzle instances that are typically generated by a consensus protocol. These instances are
then processed using a (possibly probabilistic) resource-intensive solving algorithm to produce a
solution. On solving the puzzle within certain constraints (for example, being the first participant
to find a valid solution), the puzzle solver is granted certain privileges in the consensus network
and/or is financially rewarded. Both effects produces a clear incentive for an attacker to subvert
puzzle-solving devices.

Formalizing puzzles. Our first objective is to re-formalize the notion of a cryptographic puzzle.
While previous works have offered such formalization, they have in the past been tightly coupled to
specific constructions such as the proof-of-work hash puzzles used by Bitcoin. Our goal is to identify
a formalization that can be applied to a much broader category of puzzles used in practical systems.
Our definitions simplify the definitions from the work of Groza and Warinschi [19]. However in our
formalization, we generalize each of these systems to a puzzle defined over a specific resource: the
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Figure 1: a) Direct input model. In our first setting, a victim owns the mining/evaluation hardware which in
turn communicates with an attacker-controlled pool operator through the victim’s mining/evaluation software. The
victim’s software is provided with puzzle inputs directly from the pool operator to whom it submits its work. The
pool operator in turn communicates with the consensus network/chain. b) Blockchain input model. The victim
owns the subverted mining/evaluation hardware which in turn communicates through the victim’s mining/evaluation
software. This software reads puzzle inputs from the blockchain directly, and posts any solutions found.

minimum amount of the puzzle resource required to find a valid puzzle solution is determined by
a difficulty parameter. In Section 2, we demonstrate the utility of this definition by showing that
many important primitives such as proof-of-work, VDFs, and proof-of-space fit the definitions of a
cryptographic puzzle as described in Section 2.1.

Attacker goals and threat model. The real-world examples of these puzzles are deployed in
settings where puzzle evaluators reap the rewards from solving these puzzles. In many cases (such
as sequential work puzzles), the fastest evaluator to find the puzzle solution is the only one who
receives the reward. Therefore, we focus on attacks with the following goals: either to force the
subverted evaluation hardware/software to malfunction/fail on certain puzzle instances, or else to
exfiltrate solutions to the attacker. In all attack settings, we require that such subversion should
not be detected by the owner of the hardware during testing: we realize this by postulating a
remote attacker that may initiate an attack either by providing malicious puzzle instances, or else
by providing some alternative “trigger” to the hardware. Once an attack has begun, we further
consider the attacker’s ability to detect that attack. We note that for many deployed puzzles,
attack detection is challenging and may involve some statistical uncertainty, and that moreover an
attacker may reap substantial rewards from the attack before a defender can be certain that one is
underway.

We define our threat model for the real-world attacks accordingly in Section 3.1. Informally, we
consider two settings. In each one, a remote attacker interfaces with a subverted device (or devices)
in order to trigger the attack and (optionally) receive exfiltrated results. The key difference between
our two settings is in how a remote attacker communicates with the device:

Direct input model. In the first setting, a remote attacker has the ability to feed puzzle
inputs to the victim’s subverted mining device directly. This model captures hardware that
is connected to a mining pool in which the operator is under the attacker’s control.

Blockchain input model. In this model the remote attacker must communicate with the
subverted hardware via puzzle instances read/written from the chain (Figure 1).
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Attack strategies. Based on our threat model we propose two attack strategies as described
below. The attack strategies are valid even if the devices are sold with the subversions out of the
box. However, we do focus more on variants of the attacks which are input-induced: this means that
the malicious manufacturer/attacker uses trigger puzzle instances to send the puzzle solving/mining
device into “subverted” mode. The benefit of this approach is that prior to receiving any of these
inputs the device will behave indistinguishably from an honest implementation. Following the
receipt of a valid trigger, the device enters an attack mode that may persist indefinitely or for a
finite duration set by the attacker.3 We identify two specific forms of attack that can be initiated
by this trigger:

Load-shedding attack. (§4.1, §4.3.2) Our load-shedding attack follows a simple strategy. When
the device encounters an attacker-formulated trigger, it silently rejects valid puzzle solutions
according to a pre-specified strategy4. Assuming that the subverted devices make up a sig-
nificant fraction of the overall network hashrate, this can reduce the overall hashrate and
consequently increase the fraction of total hashrate that is provided by unsubverted devices
(see Figure 6).

Leeching attack. (§4.2) During the course of an active leeching attack, the subverted device
attempts to exfiltrate valid puzzle to the remote attacker. Such an attacker can then leverage
these solutions to engage in a selfish mining [35] strategy, or to mount attacks against other
networks. In mining pools, devices are asked to output low-difficulty solutions periodically
as “proof” that the device is contributing to the pool. These partial solutions allow for the
creation of a subliminal channel that can be used to exfiltrate high-difficulty solutions when
they are found. We devise a specialized subliminal channel scheme that can be embedded
into partial solutions.

Detecting active attacks. Classical ASA security definitions require that subversion must be
undetectable even to a strong (i.e., polynomial-time) defender. The attacks we discuss in this work
cannot fully achieve this goal, at least in the phase after an attack has been activated: each attack
has a potentially detectable effect on the solution-rate of a target device. However the fact that an
attack is detectable in theory does not mean that it can be detected in practice. Thus in this work
we consider the time and resource requirements that are necessary to detect real-world attacks on
puzzle hardware.

Our investigation focuses primarily on non-deterministic schemes such as the Bitcoin proof-of-
work: our goal is to evaluate the time and resource requirements that a defender must commit in
order to achieve reasonable confidence that a device is under attack. Surprisingly, we find that for
owners of individual devices (or even large collections of subverted devices) the time required to
achieve high confidence in detecting an attack can exceed the working lifetime of the device(s) in
question. More generaly, this asymmetry between a subversion attacker and its individual victims
makes it much more likely that attacks will go undetected, motivating more sophisticated forms of
collaborative testing. Finally, we observe 2 that many deployed puzzle-solving devices also manifest
high error rates on certain inputs, which makes attack detection even more challenging.

3While input-induced attacks have been studied in previous work [17, 34], the process of triggering the subverted
devices in the setting of blockchains has not received much scrutiny. We study this setting and come up with new
ways to trigger subverted devices, sometimes even affecting the entropy on the blockchain to do so, as demonstrated
in Section 4.3.2.

4Alternatively it can just slow down the puzzle-solving process
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Figure 2: Hardware errors as they appear to a miner [36], more examples in Appendix B

Countermeasures. Finally, we devise counter-measures (Section 5) against these attacks. We
first consider various testing regimes aimed at detecting these attacks. We then proceed to proving
some general results on defense against ASAs on cryptographic puzzles. Our most promising
technique makes use of a trusted pre-processing step that produces unpredictable transformations
of the puzzle instance before feeding the instance to the puzzle solver. Since many of our attacks
are activated by specific inputs (“triggers”), pre-processing works by preventing adversaries from
supplying valid triggers to the device. We further observe that several common puzzles deployed
in cryptocurrency systems (e.g., Bitcoin) already feature pre-processing stages that can be easily
adapted to provide this security, although in practice such adaptations may not be commonly used.
Thus, mining operations can defend against these attacks with only minor changes, none of which
affect the consensus network or break existing mining hardware. We recommend that all miners
consider making this adaptation today. We further demonstrate pre-processing defenses for
algebraic puzzle protocols such as VDFs: this “masking” countermeasure does not require any
changes to the protocol. The puzzle instance can be masked before being fed to the puzzle solving
device and then the output of the puzzle solving device can be unmasked to obtain a valid solution
for the original puzzle instance. This masking approach adds an insignificant overhead to puzzle
solving.

Finally, we consider the problem of developing puzzles that are more amenable to attack detec-
tion. As noted above, many puzzle schemes make testing extremely challenging in settings where
(high-difficulty) puzzle solutions are difficult to find. We propose a new property for puzzle schemes
called test-friendliness that enables a defender to deterministically produce puzzle instances with
known solutions: a critical feature of this property is that the device must be unable to distinguish
test puzzle instances from those generated by the network, and similarly the testing capability must
not undermine the usefulness of the puzzle in the network. We discuss a simple modification of the
Bitcoin puzzle that satisfies this property.

Real-world concerns. Finally, we conclude by discussing real-world concerns (Section 6) which
are relevant to the attacks we propose and beyond. Our basic results demonstrate that we are
considering our attackers in a very strong defensive model. Namely, that the detection adversary is
very powerful and can detect most input-induced attacks which affect all but a negligible fraction
of the puzzle input domain. We choose this approach to be conservative: clearly this represents a
lower-bound on the complexity of the attack strategy. We stress that this means that real-world
attackers are likely to be even more capable than the attackers we consider in this paper. However,
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we also note that our countermeasures are independent of the strength of the detecting adversary
and hence continue to work regardless of this variable.

1.2 Related work

Previous work on ASAs [32, 9, 13, 15, 33] focuses on algorithms that employ secret keys, such as
decryption and digital signing algorithms. In this setting, the attacker’s primary goal is usually
to exfiltrate cryptographic secrets from the device: indeed, some proposed defenses have been
aimed solely at increasing the cost of this exfiltration [37]. While much work has examined key-
dependent algorithms, a small number of works have examined cryptographic algorithms that do
not employ secret keys: ASAs and defenses for primitives such as hash functions have been studied
in some detail by recent works [16, 18, 17]. While these works provide defenses for subverted
hash functions and random oracles (and mention cryptocurrency mining as an application), our
work focuses on puzzle schemes as the base-level primitive. Our threat model allows to explore the
success probabilities of various attack strategies, i.e., what subversions serve the adversary’s interest.
An important result (See 4.3.2) is that subverted hash functions (and subverted cryptographic
puzzles in general) don’t always result in successful attacks. Hence, studying the threat model, the
application setting and real-world defenses like modifying existing proof-of-work implementations
(like Bitcoin’s, see Section 5.2.1 ) is a major goal of this work. Figuring out which attacks are
actually successful and benefit the subverting adversary the most is a first step towards coming up
with real-world defenses. Another work which gives rise to some countermeasures to our attacks is
the paper [38] on scratch-off puzzles. Scratch-off puzzles make mining pools obsolete by ensuring
that the puzzles have a property making them “non-outsourceable” so that the mining operator
wouldn’t know if one of the members of the pool found a solution.

2 Cryptographic Puzzles

To provide background for the attacks in this work, we require a general definition of cryptographic
puzzles that captures the various cryptographic primitives that are used as puzzles. Our definitions
simplify and extend a previous definition by Groza and Warinschi [19]: they study cryptographic
puzzles with different difficulty requirements for puzzle solving from the perspective of puzzle
generation. For a detailed discussion on puzzle difficulty bounds we refer readers to their work.5

Our goal is to generalize and simplify the cryptographic puzzle definitions to capture a variety of
common puzzles, including client puzzles [39, 20], proof of work, verifiable delay functions (VDFs)
and proof of space. In all applications, these puzzles require some amount of resource to solve.
The nature of this resource varies between puzzles: total computation cycles in proof-of-work,
sequential-time for VDFs, and storage space for proof-of-space puzzles. Our definition is designed
to generalize over various types of resources as well.

Definition 2.1 (Cryptographic Puzzles). A cryptographic puzzle is a tuple (Setup,Pre,Eval,Verify)
comprising the possibly probabilistic algorithms defined in Figure 3.

5Groza and Warinschi’s definitions consider other properties of the puzzle from the perspective of the puzzle
evaluator such as optimality, which tightly bounds the success probability of puzzle solving and fairness, which
bounds the probability of an evaluator finding a puzzle solution after some number of computational steps. These
puzzle properties are extremely meaningful, but not directly relevant to our work.
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• Setup(1λ,∆)→ pp: The puzzle generation algorithm
takes as input a security parameter 1λ and a diffi-
culty parameter ∆. It outputs public parameters pp
which fix the domain of the unprocessed input XPre,
pre-processed input domain X , range Y of the puzzle
and other information required to compute a puzzle
or verify a puzzle solution. All the following algo-
rithms implicitly take pp as an input.

• Pre(x′, aux) → x: The puzzle pre-processing algo-
rithm (optional) takes a puzzle input x′ from the
unprocessed input domain XPre and an auxiliary in-
put aux. It outputs a processed puzzle input x ∈ X .
If no pre-processing options are presented, this is just
an identity map where x′ = x and XPre = X .

• Eval(x, aux) → y/ ⊥: The puzzle evaluation algo-
rithm takes an input x from the pre-processed input
domain and the auxiliary information aux which was
used for pre-processing. It outputs a puzzle solution
y if there exists a valid solution for the input, auxil-
iary input pair (x, aux), otherwise outputs ⊥.

• Verify(x, aux, y) → 0/1: The puzzle verification al-
gorithm takes a pre-processed puzzle input x, the
auxiliary information aux which was used for pre-
processing and an input from the range y. It outputs
either 0 or 1.

Figure 3: Cryptographic Puzzle Algorithms

As in previous works, we omit an explicit puzzle-sampling algorithm and specify that puzzles are
sampled uniformly from the domain XPre. We also slightly modify previous definitions to split the
puzzle evaluation algorithm into a new (optional) pre-processing algorithm Pre and an evaluation
algorithm Eval. This modification captures previous definitions, and will be used in several of our
later constructions.

Cryptographic puzzles must satisfy the correctness, soundness and resource requirement definition
as defined below.

Definition 2.2 (Correctness). A cryptographic puzzle is correct if ∀λ,∆, pp← Setup(1λ,∆), and
∀x ∈ X if y ← Eval(x, aux) then Verify(x, aux, y) = 1.

Definition 2.3 (Soundness). We require that an adversary can not get a verifier to accept an
incorrect puzzle solution.

Pr

[
pp← Setup(1λ,∆) (x, y, aux)← A(1λ,∆, pp)
y ̸= Eval(x, aux) Verify(x, aux, y) = 1

]
≤ negl(λ)

Furthermore, the difficulty parameter ∆ defines resource requirements for finding a correct
puzzle solution.

Definition 2.4 (Resource-requirement). We require that no PPT adversary can solve the puzzle
and consume less than Θavg(∆) of the puzzle resource while doing so in the average-case and
Θbest(∆) in the best-case.

1. Average-case. Let Ravg
A (∆) represent the average-case resource requirement for adversary

A to solve a puzzle with difficulty parameter ∆. For a large number n of puzzle instances,
{x1, x2, . . . , xn}, let indicator I = 1 if Verify(xi, auxi, yi) = 1∀i ∈ {n} and I = 0 otherwise.

Pr

[
pp← Setup(1λ,∆), xi

$←− X (yi, auxi)← A(1λ,∆, pp, xi
Ravg
A (∆) < Θavg(∆) I = 1)

]
≤ negl(λ)

2. Best-case. Let Rbest
A (∆) represent the best-case resource requirement for adversary A to

solve a puzzle with difficulty parameter ∆. It holds true ∀x ∈ X :

9



Pr

[
pp← Setup(1λ,∆), x

$←− X (y, aux)← A(1λ,∆, pp, x)
Verify(x, aux, y) = 1 Rbest

A (∆) < Θbest(∆)

]
≤ negl(λ)

Note that the pre-processing phase can be optional, in which case unprocessed and pre-processed
input are the same and consequently XPre = X and the auxiliary information aux = nil. A similar
worst-case resource requirement can be defined similarly.

2.1 Cryptographic Puzzles in the Real World

To make the above discussion more concrete, we now consider several real-world cryptographic
primitives that instantiate the cryptographic puzzle formalism.

Nakamoto Proof-of-Work. The Nakamoto proof-of-work (PoW) is a costly, time-consuming
computation that miners conduct to select the node that produces the next consensus block.
While several currencies employ proof-of-work, we will focus on the Bitcoin proof-of-work
(Section A) as a specific example. At the time of writing, Bitcoin provides a 6.25 BTC block
reward to the miner who solves this puzzle (> $ 100k.) The Bitcoin proof of work can be
formalized as a cryptographic puzzle as described in Appendix D.1.

Verifiable Delay Functions. A verifiable delay function (VDF) [40, 41, 42, 43] is a special-
ized puzzle where computing the solution on any instance requires running a fixed number
of sequential steps: at the same time, the output of the puzzle can be efficiently verified.
VDF definitions and security requirements are available in Appendix D.1. Multiple applica-
tions of VDFs [22] have sparked a coalition called “VDF Alliance” funded by the Ethereum
Foundation, Protocol Labs and others. VDFs can also be formalized in our framework as
demonstrated in Appendix D.5.

Proof of Space. Proof of Space (abbreviated as PoSpace ) [24, 29, 30] is a puzzle that was
developed as an alternative to Bitcoin’s proof of work. Unlike standard PoW algorithms,
proof of space puzzles use disk space as the puzzle resource rather than computation. PoSpace
definitions and security requirements are presented in Appendix D.1. PoSpace can also be
formalized as a cryptographic puzzle as demonstrated in Appendix D.7.

Real-world resources. Our resource-requirement definition 2.4 captures the said notion in real-
world puzzle applications. Bitcoin’s proof of work has a dynamic average-case resource requirement
for puzzle evaluation. This is because the overall hashrate of the network keeps changing but the
protocol changes difficulty/resource requirements such that the proof-of-work puzzle is solved once
every 10 minutes. The best case resource requirement is trivial, there could be a bitcoin proof of
work instance for which just computing one hash gives a valid solution. For VDFs and PoSpace
on the other hand, the aim is to have the average-case and best-case requirement be the same.
This gives a more uniform domain of puzzle instances with respect to resource requirement for
evaluating solutions.

10

https://www.vdfalliance.org/


3 Modeling ASAs against Cryptographic Puzzles

3.1 Threat Model

This work primarily focuses on the use of puzzle solving hardware as a means to secure consensus
networks. Within this setting, we focus on two primary threat models. In each setting we assume
that the hardware is subverted by a malicious manufacturer. The mining device/puzzle solving
owner is an honest party and the malicious manufacturer remotely tries to leverage the subversion
to mount an attack. The malicious party can do this in two ways. They can directly control the
inputs to the device if they also run a mining pool. This might seem like a high requirement to
mount an attack but is already the case for most popular networks6. However, even if this is not the
case, the malicious party can always communicate to the subverted device through the blockchain
as the input to the device is determined to a certain degree by the previous block header.

Direct input model The setting is motivated by mining pools where the miner contributes its
computation to a pool with a malicious pool operator. The malicious pool operator is aware of the
exact way in which the manufacturer subverted the puzzle evaluation hardware. The miner sends
its work shares/puzzle solutions to the pool operator rather than communicating directly with the
blockchain as represented in Figure 1. 7

Blockchain input model In this setting the malicious manufacturer and the miner both have
access to the blockchain as represented in Figure 1. The goal of the malicious party is to use the
blockchain to feed biased inputs to the miner’s device to leverage the subversion.

Both of the above models draw inspiration from the current state of the popular blockchain net-
works. In networks such as Bitcoin, reports have claimed that approximately two-thirds of the
mining hardware market is controlled by Bitmain, as illustrated in Figure 4. They also run the
two of the largest mining pools. We stress that there is no reason to believe that Bitmain would
subvert hardware. Nonetheless, this sort of hardware dominance provides exactly the conditions
in which ASA attacks can occur and go undetected. For all proof-of-work based cryptocurrencies
(and some others)8 utilize the concept of pooled mining.

3.2 Security against ASAs

When an ASA is mounted, an attacker replaces the standard algorithms P = (Setup,Pre,Eval,Verify)
with the subverted algorithms P = (Setup,Pre, Eval,Verify). The attacker goals are as described
earlier. The challenge for an attacker in mounting an ASA is to construct a subverted scheme that
cannot be detected. Subversion in this setting refers to the adversarial goal of A to reduce the

6Bitmain [26] is one of the largest application-specific integrated circuit (ASIC) chip manufacturer for mining and
it also operates BTC.com and Antpool which have historically been the two largest mining pools for Bitcoin

7In proof-of-work pooled mining, the miner just receives a hash output (supposed to be
H(hashMerkleRoot, hashPrevBlock) ) and a nonce range and iterates over the nonce range to compute a dou-
ble hash H(nonce, H(hashMerkleRoot, hashPrevBlock)). However, since a hash function has no structure, the
malicious pool operator can send any input which looks like a hash. It can then use this direct input to trigger
subverted behavior on the next n puzzle instances etc.

8For Chia (Proof of Space), pooled mining is very common. However, Chia encourages its miners to only work
with mining pools which utilize its open-source Chia Pool operator software. In the past, there have been pools which
had private code and a separate Chia client[46], which was speculated to have malicious intent.

11



Figure 4: Left: Market Share for Bitcoin mining ASIC manufacturers [44] and Right: Bitcoin
blocks mined by various mining pools in 2021-22 [45]. AntPool (15.4%) and BTC.com (5.4%)
together account for the highest control of hashpower and are run by the largest manufacturer
(Bitmain).

puzzle-solving ability of D and the goal of D is to detect if its running a subverted version of the
algorithm Eval to solve the puzzle. Following the footsteps of other works on ASAs we define the
goals of the subverting adversary/attacker A via the subversion game SubA

P,P
and the detecting

adversary/detector D via the detection game DetD
P,P

. We first describe the detection game DetD
P,P

(figure 5) played between a challenger and a detecting adversary D. Our oracles also output a
counter cnt indicating the time taken to compute the response, unlike previous work on ASAs, this
adds another challenge for the attacker. To formalize this, we use the following definitions. The
work of Russel, Tang, Yung and Zhou [16] serves as an inspiration for the online/offline detection
paradigm.

We now define the subversion game SubA
P,P

(figure 5) played between a challenger and a subvert-

ing adversary A. This game captures the notion that A can easily find out if a device is subverted,
simply because it crafted the subversion.

Definition 3.1 (Subversion resistance). A cryptographic puzzle scheme P = (Setup,Pre,Eval,Verify)
is subversion resistant against an algorithm-substitution attack if for the subverted puzzle algo-
rithms P = (Setup,Pre,Eval,Verify) all subverting adversaries/attacker A have a negligible advan-
tage in the subversion game SubA

P,P
, i.e., ∀(λ,∆,A):

AdvSub
A (1λ,∆) ≤ negl(λ)

A detector is motivated to check its puzzle-solving device for possible subversion. This notion
is captured by the following detection games:

Definition 3.2 (Offline Detectability). An algorithm-substitution attack against a cryptographic
puzzle scheme P = (Setup,Pre,Eval,Verify), where the subverted puzzle algorithms are represented
by P = (Setup,Pre, Eval,Verify), is considered detectable if there exists a detection adversary with
non-negligible advantage in the detection game DetD

P,P
, i.e., ∀(λ,∆), ∃D such that:

AdvDet
D (1λ,∆) > negl(λ)
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for all negligible functions negl(·).

To capture the notion that a detector might stay vigilant and check device behavior when
the device is puzzle-solving “online”, we describe an online detection game Det+D

P,P
(figure 5)

which aims at capturing the attacker-subverted device interaction when the device is online and
the attacker is trying to leverage the subversion.

Definition 3.3 (Online Detectability). An algorithm-substitution attack against a cryptographic
puzzle scheme P = (Setup,Pre,Eval,Verify), where the subverted puzzle algorithms are represented
by P = (Setup,Pre, Eval,Verify), is considered detectable if there exists a detection adversary with
non-negligible advantage in the online detection game Det+D

P,P
, i.e., ∀(λ,∆), ∃D such that:

AdvDet+
D (1λ,∆) > negl(λ)

for all negligible functions negl(·).9.

Equipped with these definitions, we are now ready to define security against ASAs.

Definition 3.4 (Security against ASAs). A cryptographic puzzle scheme P = (Setup,Pre,Eval,Verify)
is considered secure against algorithm-substitution attacks if for all possible subversions P =
(Setup,Pre, Eval,Verify) of P if the scheme is subversion resistant against the attack in the sense of
definition 3.1 or the attack is detectable in the sense of definition 3.2 (the scheme is only online
secure if the attack is only online detectable in the sense of definition 3.3).10

The role of state. There might be attacks which leverage the use of state in the subverted puzzle
algorithms. Since our model (Section 3.1 assumes a malicious manufacturer for the puzzle solving
hardware/software, the only algorithm where state can be utilized for attacks is the subverted
evaluation algorithm Eval. Therefore, we term an attack stateful if it requires Eval to maintain
state between invocations, and stateless otherwise. If the the attack is stateless then the state
update function stupd for the oracle running the subverted algorithm outputs the same state that
it takes as input.

The adversarial model of a PPT detector is inspired from previous work [9, 11, 12, 13, 14] on
ASAs. Considering our focus on cryptographic puzzles and that most such puzzles are utilized in
a blockchain setting, we further discuss the consequences of the detector and attacker strengths in
Section 2.1.

4 Attacks

We now describe our general attack strategies, followed by the challenges in the two different threat
models/attack settings as described in Section 3.1. While we emphasize attacks that are input-
induced attacks in the black-box setting, even if the devices are sold in the subverted state (no
trigger needed to subvert), the attack strategies would still work well. Such a setting is reflected
in scenarios where a puzzle solver buys some puzzle-solving hardware from an untrusted party.

9Note that if an attack is only online detectable then it is stronger as it requires a stronger detector
10Offline detectability (3.2) implies online detectability (3.3) trivially as an adversary winning the offline detectabil-

ity game can just ignore the extra oracle access in the online detection game Det+D
P,P
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DetD
P,P

:

• Setup. In the setup phase, the challenger sam-

ples a bit b
$←− {0, 1}. If b = 0, the chal-

lenger runs the unsubverted puzzle algorithms
P = (Setup,Pre,Eval,Verify) and sends the out-
put of Setup(1λ,∆) to the adversary D. Other-
wise, it runs the subverted puzzle algorithms P =
(Setup,Pre,Eval,Verify) and sends the output of
Setup(1λ,∆) to D.

• Query. In the query phase, the adversary gets access
to one of the puzzle evaluation oracles OEval or OEval
depending on the challenger’s sampled bit b being 0
or 1. These oracles are defined as follows:

– OEval(pp, ·, ·) takes as input an element x ∈ X
and the corresponding pre-processing auxil-
iary input aux. It computes and outputs
y ← Eval(x, aux) and a counter cnt indicat-
ing the time spent in computing the output.

– OEval(pp, state, ·, ·) takes as input an element
x ∈ X , the corresponding pre-processing aux-
iliary input aux and also maintains an in-
ternal state state. It computes and outputs
y ← Eval(x, aux) and a counter cnt indicat-
ing the time spent in computing the output.
The state update function, sets new state as
state′ ← stupd(state, x).

• Guess. In this phase, the adversary outputs its
guess b′ for b and wins the detection game if b′ = b.
We say that the game outputs 1 if the adversary wins
and 0 otherwise. The advantage of an adversary D
is defined as
AdvDet

D (1λ,∆) = Pr[b′ = b]− 1/2.

SubA
P,P

:

• Setup. In the setup phase, the challenger sam-

ples a bit b
$←− {0, 1}. If b = 0, the chal-

lenger runs the unsubverted puzzle algorithms P =
(Setup,Pre,Eval,Verify) and sets pp ← Setup(1λ,∆)
to the adversary A. Otherwise, it runs the subverted
puzzle algorithms P = (Setup,Pre,Eval,Verify) and
sets pp ← Setup(1λ,∆). It sends (pp,P) to the ad-
versary A.

• Query. In the query phase, the adversary A gets
access to one of the puzzle evaluation oracles OEval

or OEval depending on the challenger’s sampled bit b
being 0 or 1. These oracles are exactly the same in
the detection game DetD

P,P
.

• Guess. In this phase, the adversary outputs its
guess b′ for b and wins the detection game if b′ = b.
We say that the game outputs 1 if the adversary wins
and 0 otherwise.

The advantage of an adversary D is defined as
AdvSub

A (1λ,∆) = Pr[b′ = b]− 1/2.

Det+D
P,P

:

In this variant of the detection game, the adversary also has
black-box access to an attacker. The attacker is an adver-
sary in the subversion game SubA

P,P
that wins with some

non-negligible probability. We describe the attack oracle as
follows:

– Ol
Attack(pp, ·, ·) takes as input the public parameters,

a symbol s indicating the start of an attack instance
and a tuple t = (x, y, cnt) indicating device’s out-
put on the latest input instance. The symbol s = 1
indicates the start of a fresh oracle query, this can
be accompanied by t = (⊥,⊥,⊥) to indicate a clear
start of an attack instance. All following queries have
inputs of type either (i) s = 0 (indicating continu-
ation) and t = (x, y, cnt) or (ii) s = 1 (indicating
oracle reset) and t = (⊥,⊥,⊥). The oracle outputs
a puzzle input instance x ∈ X and the corresponding
pre-processing auxiliary input aux from a subverting
adversary/ attacker that wins the subversion game
SubA

P,P
. The oracle is set to allow resetting up to l

times.

Figure 5: The detection games DetD
P,P

, Det+D
P,P

and the subversion game SubA
P,P

A simple example of an input-induced attack is to have a set of hard-coded triggers in the puzzle
evaluation hardware/software on which the evaluation fails/does not proceed as expected. However,
in this case, the set of such triggers will need to be negligibly small compared to the puzzle input
domain in order to avoid detection.

Trigger strategy. At manufacturing time, the untrusted party must select a set of trigger in-
puts X , where X ⊂ X such that if x ∈ X then the evaluation algorithm misbehaves, as spec-
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ified by the subversion. Therefore, in both our attack settings for a cryptographic puzzle P =
(Setup,Pre,Eval,Verify) the subverted puzzle algorithms are of the form P = (Setup,Pre,Eval,Verify).
Due to the black-box nature of the attack setting, any detector can only detect the subversion
through oracle access.
P.Eval(pp, x,X ): The subverted puzzle evaluation algorithm takes as input the public parameters
pp, an input from the domain x, and a set X ⊂ X . If x ∈ X \ X it outputs a puzzle solution y.
Otherwise, the evaluation algorithm fails to produce an output.

4.1 Load-Shedding Attack

The goal of a load-shedding attack is to slow down the solution-rate of the puzzle solving algorithm.
Depending on the application, the attacker could make it so that the subverted device just discard
the puzzle solution (such as the proof-of-work puzzle solution) or just reduce puzzle-solving ability
slightly (would cause slightly extra delay for VDFs). If an attacker can cause this to happen across
a large enough fraction of a network’s device capacity, the overall network solution-rate reduces
and unsubverted devices will comprise a higher percentage of the network’s capacity. Furthermore,
load-shedding can be combined with strategies such as selfish mining [35, see Appendix A] to enable
efficient consensus attacks on certain networks even when the attacker directly possesses a relatively
small fraction of the hashrate (see Figure 6). If this happens only occasionally, the attacker may be
able to repeat this attack undetected for a long period of time. A similar attack strategy (without
accompanying analysis) is proposed in [17], our attack can be considered an extension of this. The
attack strategy proposed by [17] is that the hash function is different from an implementation on
certain inputs, we extend the idea to make such difference actually beneficial to the adversary.

We first prove some general results on load-shedding attacks where the size of the adversarially
hard-coded bad inputs is negligible in the security parameter. This models the setting where the
detector D is testing its hardware to ensure proper performance. Since, the set of bad inputs is
negligibly small, the probability of detection is negligibly low. However, when the attacker plays
the subversion game, it can easily detect whether the challenger is operating a subverted evaluation
algorithm. This is because the attacker knows the set of hard-coded bad inputs. 11

Theorem 4.1. For all load-shedding attacks where |X ||X | < negl(λ), there exists no PPT detector D
which wins the offline detection game DetD

P,P
with non-negligible advantage.

Proof. The set of subverted inputs X is a random subset of the set of inputs X . Given that
|X |
|X | < negl(λ), for a PPT detector D, the advantage of winning the detection game DetD

P,P
is same

as the probability of querying the evaluation oracle on at least one input x ∈ X . Let event E be
the query instance when D queries the evaluation oracle on an input x ∈ X . Let Pr

[
E
]
= 1−Pr[E]

be the probability of event E (complement of event E), i.e. , for query x of D, x /∈ X . Let q be
the number of queries that D asks. Then,

AdvDet
D (1λ,∆) = 1−

(
Pr
[
E
])q

= 1−
(
Pr
[
x ∈ X \ X

])q
= 1− (1− negl(λ))q

11We assume for theorems 4.1-4.3 that the puzzle evaluator does not utilize the puzzle pre-processing algorithm
and feeds puzzle inputs without pre-processing to the evaluation hardware/software.
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Figure 6: Percentage (effective) increase in attacker hashrate plot as a function of the attacker’s
original hashrate (δ) and the percentage of subverted devices. This assumes that the subverted
devices, are unable to find a puzzle solution when under a load-shedding attack in the direct input
model.

≈ 1− (1− q.negl(λ)) = q.negl(λ)

Since, q is the number of queries D asks, q = poly(λ). Therefore,

AdvDet
D (1λ,∆) = q.negl(λ) = negl′(λ)

Theorem 4.2. For all load-shedding attacks, there exists a PPT attacker A which wins the sub-
version game SubA

P,P
with non-negligible advantage.

Proof. The attacker A leverages its knowledge of the set of subverted inputs X . Upon receiving
the public parameters pp and the subverted algorithms P = (Setup,Pre,Eval,Verify), in the query
phase, the attacker first queries on inputs x ∈ X \ X . After this, the attacker picks x′ ∈ X
as a query. Using the expected response time from querying on the unsubverted set of inputs,
the attacker decides whether its querying the subverted oracle or not based on the (timed) query
response received for the subverted input x′. This is because the unsubverted oracle would respond
with a correct solution in the expected time.

Theorem 4.3 (offline-security). All cryptographic puzzle schemes P = (Setup,Eval,Verify) are

susceptible to subversion via any load-shedding attacks where |X |
2λ

< negl(λ).

Proof. This follows from Theorem 4.1 and Theorem 4.2 under definition 3.4. □

Online-security against Load-shedding. We discuss this issue separately as the online-security
of a puzzle-solving device against a load-shedding attack depends on the real-world use-case. For
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example, for proof-of-work, most mining devices operate within an acceptable error range of puzzle-
solving ability. If the drop in performance is within the range, the device owner can possibly blame
it to physical conditions (temperature etc.) in which the device is hosted. Depending on how
often the adversary mounts a load-shedding attack, the drop in puzzle-solving ability can still be
in the acceptable range and its never detected. However, a load-shedding attack would be online
detectable in the sense of definition 3.3 as in an ideal world the device has a given, set puzzle-solving
ability and deviation from that would be evidence for the detector that the device is subverted.

More realistic adversarial constraints. The above theorems are focused on load-shedding at-
tacks which load-shed with negligible probability. These might seem like ineffective attacks but they
are important to study because they are of relevance to both our threat models. In the direct input
model, the adversary decides and picks the puzzle inputs. And in the blockchain input model, the
puzzle inputs can be adversarially biased and even adversarially decided. Therefore, it is important
to consider the potential of the adversary biasing the blockchain’s state in order to increase the
likelihood of the hard-coded attack instances being fed to the puzzle solving device. Furthermore,
a stateful variant of the attack needs to be considered as well. If a stateful attack induces an attack
trigger over the course of multiple blocks, even an adversary with limited capabilities can attempt
to bias the blockchain’s state by a few bits every block. The goal of the adversary then becomes
to bias the blockchain’s entropy which has been studied in some detail. We discuss this further in
Section 4.3.2.

4.2 Leeching Attack

The goal of the adversary with the leeching attack is to compromise the puzzle evaluation hardware
in such that (when triggered) it exfiltrates puzzle solutions to the attacker.12 While we use Bitcoin
mining as a high-impact example, this attack is relevant to almost all proof-of-work based cryp-
tocurrencies. The subverted evaluation algorithm tries to exfiltrate the first solution it finds to the
puzzle without outputting it, and continues to find the second solution which it then outputs. We
describe the exfiltration process and the attack in detail below. Such exfiltration is not unrealistic
because the puzzle evaluation hardware is an online device, ex. bitcoin mining rigs [47, Page 5].
Clearly, in the example of selfish mining such an attack is very beneficial. Now, the attacker does
not need to own a third of the hashrate but instead just needs to subvert enough devices to reach
the attack threshold.

In proof-of-work mining, many miners pool their efforts with different mining pools. Each
mining pool has its own software, and the pools have a pool operator who uses an algorithm to
split work into shares that are farmed out to workers. Let the block reward minus the fee charged
by the pool operator be B. Each worker then is paid reward R = B · n

N , where n is fraction of
work their shares represent and N is the total amount of work represented by all shares. To prove
that workers are contributing, they must output solutions found at much lower difficulty levels
(this assumes a puzzle that can find low-difficulty solutions while also searching for high-difficulty
solutions, a property that is not common to all puzzles.) These low-difficulty solutions are used as
a subliminal channel for exfiltration. The exact exfiltration process and the exfiltration game are
presented in figure 7.

We again proceed by first proving some general results on leeching attacks where the size of
the adversarially hard-coded bad inputs is negligible in the security parameter.

12This can be thought of as a variant of load-shedding but with exfiltration
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Assume that Tx,aux(x, aux) represents the communication
transcript between the pool operator and the puzzle solv-
ing/mining device, given a puzzle input x and auxiliary in-
formation aux.

• Exf(sk, y, Tx,aux) → T x,aux: The exfiltration algo-
rithm takes as input a secret key sk for symmetric
encryption, a puzzle solution y ∈ Y and the com-
munication transcript for the corresponding puzzle
input, auxiliary information pair (x, aux). It outputs
a T x,aux to replace Tx,aux.

• Ret(sk, T x,aux) → y/ ⊥: The retrieve algorithm
takes as input a secret key sk for symmetric en-
cryption and the communication transcript T x,aux

for the corresponding puzzle input, auxiliary infor-
mation pair (x, aux). It outputs a puzzle solution
y ∈ Y or ⊥.

• P.Eval(sk, x, aux,X ): The subverted puzzle evalua-
tion algorithm takes a secret key sk for symmetric
encryption, an input from the domain x, auxiliary
information aux and a set X ⊂ X .

– If x ∈ X \ X :

∗ Compute a puzzle solution y1.

∗ Run the exfiltration algorithm
Exf(sk, y1, Tx,aux).

∗ Compute and output a puzzle solution
y2 and auxiliary information aux. Such
that y2 ̸= y1.

– Else output a puzzle solution y and a proof π.

Figure 7: The exfiltration process

Theorem 4.4. For all leeching attacks where |X |
2λ

< negl(λ), there exists no PPT detector D which

wins the offline detection game DetD
P,P

with non-negligible advantage.

Proof sketch. Proof arguments are exactly the same as the proof for Theorem 4.1.

Theorem 4.5. For all leeching attacks, there exists a PPT attacker A which wins the subversion
game SubA

P,P
with non-negligible advantage.

Proof sketch. Proof arguments are exactly the same as the proof for Theorem 4.2.

Theorem 4.6 (offline-security). If there exists a secure exfiltration channel E, all cryptographic
puzzle schemes P = (Setup,Pre,Eval,Verify) are susceptible to subversion via any leeching attacks

where |X |
2λ

< negl(λ).

Proof sketch. Since this attack and exflitration becomes relevant in the online phase, in the offline
phase, security depends on testing the device on a trigger element x′ ∈ X . This, along with the fact
that any subverting adversary can win the subversion game SubA

P,P
(Theorem 4.5), viewed under

definition 3.4, completes our proof. □

Online-security against Leeching. Similar to online-security of load-shedding, we discuss this
issue separately as the online-security of a puzzle-solving device against this attack depends on
the real-world use-case. In proof-of-work, most mining devices have been exhibiting “hardware
errors”(Appendix B), these are inputs on which the device hardware does not produce an output.
From the resources compiled in Appendix B, we can see that accumulating a few hundred errors
after running a mining device for a few days is considered acceptable by the community. Mining
device owners across the world have discussed this issue and the general consensus is that this is
due to pushing the devices to the absolute edge of performance. This is exactly how things would
appear to a device owner if a leeching attack was underway.

Leeched Selfish-Mining Attack against Bitcoin. The following attack strategy can be em-
ployed by a Bitcoin mining pool operator who also manufactures mining hardware or colludes with
the manufacturer. Let the set of devices manufactured by this manufacturer be D, a subset D of D
are subverted.slac
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1. Embed the subverted set of inputs X in the hardware during manufacturing.

2. Use the work shares (low-difficulty solutions) as a secure exfiltration channel E

3. On receiving an exfiltrated puzzle solution, follow the selfish-mining attack strategy and
secretly mine on this fork of the blockchain on devices in the set D \ D.

The following is a concrete method to utilize the malicious pool operator and the subverted
hardware for exfiltration:

1. Given m work shares, utilize them to communicate a n-bit string

2. Submit work shares such that the low-order bit of the i′th work share is also the i′th bit of
the (encoded, see figure 7) puzzle solution

All the bits of the solution can be leaked even if ≈ 300 work shares are used. As a point
of reference, consider that all Bitcoin mining pools currently set the work share difficulty for each
device such that one work share is generated every 2-3 seconds [48]. Given the Bitcoin block time of
10 minutes, each miner is sending up to 300 work shares per block to its pool operator. This amount
of communication is enough to exfiltrate all the bits of a proof of work, encrypted or unencrypted.

4.3 Attack Settings

We now discuss the challenges in the two different threat models.

4.3.1 Direct Input Model

In the direct input model, an attacker can mount both load-shedding and leeching attacks. The
attacker directly send puzzle inputs to the subverted device. If there is a way to exfiltrate puzzle
solutions (for example, in the form of lower-level difficulty solutions as used in proof-of-work to
demonstrate contribution of efforts) then these allow for leeching attacks as well. The attacker
has complete control over what is input into the device. This allows the attacker to trigger the
device whenever it chooses to do so. There are many clever strategies an attacker can combine
with load-shedding to go undetectable. For example, the attacker could have subverted the device
so that on observing a trigger, the device’s puzzle-solving ability only declines for the next hour for
example. This gives the attacker the fine-grained ability to trigger devices temporarily, the idea is
to go undetected but continually benefit from the subversion.

4.3.2 Blockchain Input Model

In the blockchain input model, an attacker can only mount a load-shedding attack. The attacker
is leveraging the fact that the mining device reads from the blockchain. Therefore, the adversary’s
influence on the blockchain’s state determines the strength of any such attack. The communication
channel here only goes from the attacker to the subverted device via the blockchain. Hence, no
exfiltration of puzzle solutions and, consequently, no leeching attacks are possible. We operate
with the simple assumption that any such adversary will own some fraction of the puzzle-solving
resource in the blockchain’s network.
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The adversary’s attempt to bias the blockchain is then captured by the following game δAbias
played between a set of honest miners/puzzle solvers and an adversary A. The goal of the adversary
is to bias the probability distribution of the extract of a decisive block, which is a future block of
interest to the adversary. The adversary holds influence over a δ fraction of the blockchain network’s
puzzle solving resource. The adversary wins if the extract x of the decisive block B, Ext(B) = x
falls in a subset favorable to the adversary. We denote this via the indicator function, I where
I(x) = 1 if x ∈ F and I(x) = 0 otherwise, for F being the favorable set for the adversary. Clearly,
the size of the set of favorable set F affects the adversary’s success. This model is inspired from the
work of Pierrot and Wesolowski [49] which models an adversary who biases a blockchain’s entropy.
The assumption that each new block has some min-entropy follows from the work of Bonneau,
Clark and Goldfeder [50]. We describe the models in these related works in Appendix C.

Definition 4.1 (δ-bias Ability). An adversary A has δ-bias ability if for sA being the number of
puzzle solutions per second the adversary can calculate and s being the number of puzzle solutions
per second all miners combined (including A) can calculate,

δ =
sA
s

This is a lower bound of bias considering the hashrate controlled by the attacker. The attacker
might collude with or bribe other parties to increase their bias ability.

Challenges w.r.t Load-shedding. In this setting, if an attacker aims to mount a load-shedding
attack, they leverage their influence over the blockchain. Therefore, we first focus on the probability
with which such an adversary can bias the blockchain’s inputs based on their bias ability. Assuming
the puzzle solvers start solving for a solution as soon as the a next potential block is broadcast,
the adversary’s goal is to broadcast a block favorable to it. In the process, the adversary might
throw away some a valid puzzle solutions it finds. The variable µ represents the favorable set F as
a fraction of the puzzle domain size. From the work of Pierrot and Wesolowski [49, Section 3.3], we
borrow the following result which gives us the probability with which as adversary A with δ-bias
ability wins the δAbias game:

Pr
[
δAbias = 1

]
=
∑
a>0

(δ(1− µ))aµ =
µ

1− δ(1− µ)

Similar to the cited work, we note that when δ ≥ 0 and µ ≤ 1, the above probability is better
than µ.

As is clear from the calculation above, when µ is negligibly small compared to the security
parameter, this attack does not work very well. However, we now discuss a variant of the attack
which improves this success probability by making the attack stateful.

Stateful Load-shedding. In the stateful variant of the attack, the attacker makes the subversion
stateful. This is an extremely crucial attack variant to consider due to the fact that an adversary
mounting a stateful attack does not need a lot of influence over the blockchain’s state. For example,
a simple strategy can be to pick the low-order bit in the block header, subvert the puzzle solving
device so that if it sees n consecutive blocks such that the low-order bits form a particular n-bit
string (some x ∈ X ) then it fails to compute the puzzle solution completely or becomes much
slower. However, some constraints remain the same. The subverted set of inputs X still has to be
negligibly small in order to avoid getting detected. There could be many different ways to trigger
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failure based on states. The main issue is that now the attacker can feed in triggers slowly, block
by block, to make the device fail eventually. Similar to previous attacks, the more influence the
attacker holds over the blockchain’s state, the stronger the attack. We show some general results
on stateful load-shedding attacks in the blockchain input model.

More formally, the adversary’s aim is to bias the blockchain’s state over n blocks, such that
for some encoding Enc, Enc(Bn) = 1, where Bn represents the state of the blockchain over the
last n blocks. Assuming an error-correcting code such that given a message length of k-bits and
some failure rate p, it encodes the message in n-bits such that even if p.k bits of the encoding get
flipped, the message can still be decoded successfully. Therefore, for the attacker to successfully
trigger a stateful load-shedding attack, it needs to win the following δAbias game (K)-out-of-n times
(where K = n− p.k). The goal of the adversary is to bias the blockchain such that the extract of
the decisive block Ext(B) = 1, here Ext(B) = 1 if the low-order bit of the block header is 1. This
happens with probability 1/2, therefore the favorable set of the adversary is 1/2 of the possible
outcomes. This gives us that µ = 1/2. Let PA be the win probability in the δAbias game as defined
above,

PA =
µ

1− δ(1− µ)
=

1
2

1− δ
2

=
1

2− δ
as µ =

1

2

Therefore, given that the stateful load-shedding attack succeeds if the adversary wins the above
game at least (K)-out-of-n times (where K = n − p.k). Let the string s ∈ {0, 1} represent the
results of n consecutive δAbias games played by the adversary. The i-th bit of s represents the result
of the i-th δAbias game. Let s1 represent the number of 1s in s, and s0 represent the number of 0s in
s. The attack success probability:

Pr[s1 ≥ K] = Pr[s0 < K]

= 1−

(
K−1∑
i=1

(
n

i

)(
1

2− δ

)i(1− δ

2− δ

)n−i
)

= 1− 1

(2− δ)n

(
K−1∑
i=1

(
n

i

)
(1− δ)n−i

)
As a result of this strategy, probability of subversion increases drastically while probability

of detection does not change at all. We plot the values of K, n, the (Reed-Solomon) encoding
parameters, the probability of success, next to different values of the adversarial resource fraction
δ in Table 1. Note that such an attack can not be detected by any detection adversary (Theorem
4.1) and any attacker can figure out if the puzzle-solving device is running a subverted variant of
the puzzle evaluation algorithm by simply checking if the encoding of the blockchain’s state in the
last n blocks, Enc(Bn) is a part of the subverted/trigger set X .

5 Securing Puzzles against ASAs

We now know that the attacks can be dangerous and hard to detect. In this section, we look at the
different ways to defend against such attacks. The two key directions we look at are: (i) testing
regimes to figure out if a device is subverted and (ii) countermeasures against these attacks, which
make it so that the attacker does not benefit from/can not trigger the subversion.
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Attacker hashrate
(δ)

RS Encoding
Parameters RS(n,K)

Stateful Success
Probability

1− 1
(2−δ)n

(∑K−1
i=1

(
n
i

)
(1− δ)n−i

) Stateless Success
Probability

0.05 RS(520, 256) 0.83 negl(λ)

0.10 RS(526, 256) 0.96 negl(λ)

0.15 RS(533, 256) 0.997 negl(λ)

0.20 RS(541, 256) 0.9997 negl(λ)

0.25 RS(549, 256) ≈ 1 negl(λ)

Table 1: Attack success probabilities and Reed-Solomon Encoding Parameters (with 1-bit sym-
bols) for the stateful Load-shedding attack (in the blockchain input model), depending on attacker
hashrate for a 256-bits trigger. Note that the attacker can have multiple triggers, but the number
of triggers X has to be negligible in terms of the security parameter to avoid detection. This also
assumes that attacker hashrate never goes below δ for n consecutive blocks, changes will decrease
probability of success.

5.1 Testing

The best example of wide-scale use of puzzle evaluators in the real-world is proof-of-work mining
hardware. Currently, there is no standardized testing against flaws, other than computing the
number of operations per second. However, in light of our proposed attacks, owners of such devices
might be interested in testing for subversions. However, every time period a mining device is not
actually being used for mining, it is incurring an economic loss to its owner. More testing in this
sense also benefits mining device manufacturers who also use their manufactured devices. Ironically,
this can result in a paradox where distrust in the manufacturer benefits the attacker. The following
techniques can be used to test for subversion:

Black-box statistical testing. A natural approach to detecting load-shedding and leeching
attacks is to perform statistical tests to verify that the device is producing solutions at the expected
rate. However, this test can be time-consuming in networks (such as Bitcoin) where individual
puzzle-solving devices find full-difficulty solutions only at long intervals.

To evaluate the time and resources required to execute this testing strategy, we model this
strategy for a hypothetical load-shedding attack against Bitcoin’s proof-of-work in Figure 8. Sup-
pose the hashrate of the miner is δ. We assume a 100% load-shedding attack (i.e., the victim’s
subverted device(s) never find a valid solution at the target difficulty.) We then determine the
number of blocks b that the victim will process before they can determine with some chosen level
of confidence that an attack may be underway. Here we pick a confidence level of 0.05 and the
statistical test is: at what (smallest) value of b is it true that δb < 0.05 = p. When the miner
is load-shed at lower values (e.g., 50% or 33% of solutions are discarded) this analysis must be
adjusted accordingly. Taking as example the case when the device is load-shed half of the time,
the expected number of blocks found is e = 1

2 · δ · b. Thus testing requires roughly number of

blocks b such that
∑e

x=0

(
b
e

)
· δx · (1 − δ)b−x < 0.05 = p. Naturally this test has some element of

statistical variation: a test can be unlucky and the results could make a subverted device appear
to be performing properly or vice-versa.

While we select conservative parameters for our test, our results in Figure 8 demonstrate a
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fundamental asymmetry between attacker and defender: while the attacker benefits from load
shedding across the full network, individual victims may find it extremely costly and time consuming
to test their own devices. A possible solution to this problem is for many individual mining parties
to share measurements and communicate their own test results each other. For individual devices
the attacks may never be detected: if the attacker decides to trigger the subversion shortly after
the device is sold, it could take longer than the device’s lifespan to complete a test.

Use existing puzzles with known solutions. In any proof-of-work cryptocurrency, solutions
at the required difficulty level are found at least every few minutes. To test the mining devices,
one can simply supply randomness ranges for the known solution in the past blocks, along with
the other information (for Bitcoin prof-of-work this is the Merkle tree root of proposed block and
the previous block hash as described in Section A). This strategy can detect obvious subversion.
Unfortunately, this strategy may have some limitations: a subversion attacker who knows a set of
past solutions at the time of device manufacture (or even subsequently, assuming an appropriate
subliminal channel to the device) may be able to configure the device to succeed on these known
inputs, which may render this testing strategy ineffective.

Devising testing-friendly puzzles. Many standard puzzle schemes require an unpredictable
resource investment in order to solve a randomly-chosen puzzle instance. As noted above, this
can make testing challenging: for example, the Bitcoin puzzle (at current network difficulty levels)
is sufficiently resource-intensive that a single device may never encounter a valid solution to a
network-selected puzzle instance. This can make it particularly challenging to test devices.

An alternative approach to this problem is to devise puzzles that feature a property that we
refer to as test-friendliness. A test-friendly puzzle is one that has a specialized algorithm Testgen
that, on input some chosen test parameter ρ, produces a puzzle instance x with a known solution
that can be found after approximately ρ resource-units by a solver executing a known strategy.
Critically, such puzzle instances must be at least computationally indistinguishable from random
puzzle instances that have similar resource requirements: this ensures that a subverted device
cannot distinguish testing instances from “lucky” random instances generated by a network.13

A simple example of a test-friendly puzzle for Bitcoin includes the description of a modified
programmable hash function Hr,p as part of the puzzle instance. This function has the simple
property that H(r) = p, where p is a valid puzzle solution and r is some input that a puzzle
solver will identify in ρ units of time using a known test strategy. Such puzzles are relatively
easy to construct using standard hash functions: simply define Hr,p(x) = H(x)⊕ T where T is an
additional string with length equal to the hash function’s range. To program a specific pair r, p the
tester simply computes T ← H(r) ⊕ p. It is easy to see that if H is modeled as a random oracle
and T is chosen uniformly at random, the resulting function produces output that is statistically
identical to a random oracle. Hence, provided that a fresh T is sampled uniformly by a network
every few days, such instances can be used safely as valid puzzle instances. Consequently, the
implementations should provide T as an input parameter. We omit a detailed analysis of this
approach, but we note that it is similar to a proposal by Russell et al. [17] and benefits from the
same analysis.

13Naturally such indistinguishability may not hold against attacker-chosen puzzle instances. We address defenses
against this in the next section.
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Figure 8: Time taken to statistically detect a (load-shedding) subverted device. Estimates based
on Bitcoin mining 2022. We assume that the overall hashrate of the network is ≈200m TH/s and
stays constant. We assume it is profitable to use a mining device for 18 months ≈80k blocks [51].
The current cost of buying a device with 100 TH/s hashrate is around $1000-2000. Such a device
currently consumes around 3 KW/h of power. Assuming a very conservative $0.10 per KW/h of
electricity, we get cost of around $200, 000 to have statistical confidence (p-value = 0.05) if the
device is subverted. The reason for this is that regardless of your hashrate, the event used for the
testing the hypothesis (whether the device is subverted) happens once every block, across the whole
network. The cost is spent over 600 blocks (≈ 4 days) for a miner with a hashrate of 1m TH/s, and
over 600, 000 blocks (≈a decade) for a device with 100 TH/s. We plot the differences in the testing
time based on the %-age of time the attacker load-sheds the subverted miner. While the lines are
closer on the logarithmic scale, the testing time jumps up by 300% if the device is load-shed only
half the time and ≈ 900% if its load-shed only a third of the time.

5.2 Unpredictable Puzzle Pre-processing

The unpredictability of the pre-processing that the puzzle construction supports captures how much
control and flexibility the evaluator has, once a puzzle instance is received. If the evaluator has a lot
of flexibility then the auxiliary information aux used by the pre-processing algorithm is a crucial part
of the algorithm. So much so that without knowledge of the randomness utilized in pre-processing,
it could be hard to predict the pre-processed input. Such a mechanism is a countermeasure against
all input-induced attacks. Given that the set of subverted inputs X is small enough, if the pre-
processing algorithm has the unpredictability property as defined below, then the adversary is not
able to trigger the subverted device with non-negligible probability. Unpredictable pre-processing
prevents any adversary from knowing exactly what bits are input to the subverted device, which
is all that is needed to prevent an adversary benefiting from an input-induced attack. Note that
this is a generalization of defenses as proposed in [17] and their countermeasure is a special case
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of unpredictable pre-processing for hash functions only. And that cryptographic puzzles in general
might allow for different techniques to achieve this, as shown by our protocol for masking Pietrzak
VDFs.

Definition 5.1 (Unpredictable Pre-processing). The pre-processing algorithm Pre has the unpre-
dictability property if no PPT adversary A can distinguish the output of the algorithm from a
random string with non-negligible probability, given only the unprocessed puzzle input and no
knowledge of the randomness used to generate aux.

Pr

[
x← Pre(x′, aux), r

$←− XPre b
$←− {0, 1}, pp← Setup(1λ,∆)

b′ = b b′ ← A(1λ,∆, pp, x′, b.x+ (1− b).r)

]
− 1

2
≤ negl(λ)

Now, while the identity function is a validate candidate for the pre-processing algorithm Pre, it
clearly does not have the unpredictability property. The Bitcoin proof-of-work (Section A) puzzle
is a good example of puzzles with unpredictable pre-processing.

Theorem 5.1. In the direct input model, if the evaluator uses a puzzle pre-processing algorithm not
satisfying the unpredictability property, all cryptographic puzzle schemes P = (Setup,Eval,Verify)

are susceptible to subversion via any stateless load-shedding attacks where |X |
2λ

< negl(λ).

Proof. This is a corollary of Theorem 4.3.

Theorem 5.2. In the direct input model, if the evaluator uses a puzzle pre-processing algorithm sat-
isfying the unpredictability property, then there exists no PPT attacker A which wins the subversion

game SubA
P,P

with non-negligible advantage for any input-induced attack where |X |
2λ

< negl(λ).

Proof sketch. If the puzzle pre-processing algorithm satisfies the unpredictability property then the
adversary can only distinguish the input fed to the device from a random string with negligible
probability. Therefore, the input to the device is effectively random for the adversary and hence it
can can feed the device a subverted input to the device with probability

∣∣X/X ∣∣ = negl(λ).

Theorem 5.3. In the direct input model, all cryptographic puzzle schemes P = (Setup,Pre,Eval,Verify)
utilizing a puzzle pre-processing algorithm satisfying the unpredictability property are secure against
subversion via all input-induced attacks.

Proof sketch. We split the proof into two parts:

1. if the size of the set of subverted inputs
∣∣X ∣∣ is a non-negligible function of λ then the detector

D detects the subverted inputs with non-negligible probability just by polynomial testing

2. if
∣∣X ∣∣ = negl(λ) then the attacker A can not win the subversion game SubA

P,P
with non-

negligible probability by Theorem 5.2

In either case, by definition 3.4, all cryptographic puzzle schemes P = (Setup,Pre,Eval,Verify)
utilizing a puzzle pre-processing algorithm satisfying the unpredictability property are secure against
subversion via all input-induced attacks. □
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5.2.1 Protecting proof-of-work against ASAs

To ensure that the pooled mining protocols with pool operators allow unpredictable pre-processing
of the proof-of-work puzzle input we suggest a new standardized protocol for pooled mining under
pool operators (and not peer-to-peer mining). Such standardization also demands that a public
implementation of such a protocol is utilized. While the protocol described above is specifically for
Bitcoin’s proof-of-work, small modifications make it applicable to most proof-of-work cryptocur-
rencies.

Current pooled mining protocol [52]. The pool operator creates a candidate block by aggre-
gating and creating a Merkle tree of transactions to be included, adding a coinbase transaction
and linking the proposed candidate to the previous block. The coinbase transaction is the first
transaction verified transaction on the list of verified transactions in a proposed block. Its value
corresponds to the current block reward. The miners participating in the pool then iterate over
different values of the time and nonce fields as specified in the block hash algorithm (in Section A)
to find proof-of-work solutions.

Our proposed pooled mining protocol. The main change we propose is that the coinbase
transaction should be modified by the miners. The coinbase transactions have extra fields for data
and extraNonce which can be modified to provide up to 100 bytes [53] of extra space to iterate over
for miners. The goal of this suggested change is to allow miners the flexibility of picking the inputs
to their mining devices. As demonstrated by the trigger example for the direct input model (Section
3.1), allowing the pool operator to pick the exact string input to the mining device allows for the
load-shedding and leeching as described in the previous sections. Modifications to the coinbase
are not a new concept and enforcing such changes can be done by the mining software. We spare
the details here as similar changes have been suggested in the mining protocol by SlushPool [54],
although due to reasons such as efficient mining work allotment etc. We also recommend that all
proof-of-work cryptocurrencies instruct users to only use pools with open-source mining software.
Similar ASAs can be mounted at the software level as well and there is no clear way to prevent it
if the mining software is closed source.

Theorem 5.4. proof-of-work pre-processing as specified above satisfies the unpredictability property
as defined in definition 5.1.

Proof sketch. If the number of bits modified by the miner, before inputting the resulting hash to the
mining device is some linear function f(λ) in the security parameter, then probability of the pool
operator correctly estimating the exact input to the mining device is negl(λ) = 1

2f(λ)
. Considering

that the proof-of-work pre-processing as specified above allows upto 100 bytes of entropy to be used
by the miners, it satisfies the unpredictability property as defined in definition 5.1.

5.2.2 Masking Pietrzak’s VDFs

Verifiable delay functions (VDFs) are now being utilized by multiple blockchain protocols14 [22, 30].
We now discuss a method to mask the VDF input from a puzzle solving device in case the input was
adversarially biased to cause input-induced attacks. This is one way to ensure unpredictable puzzle
pre-processing for VDFs. We demonstrate a masking protocol using Pietrzak’s VDF construction
[41]. Our masking protocol changes the original scheme minimally and the extra computation

14A full decription of Ethereum’s Beacon Chain protocol is available in Appendix E.
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Halving Subprotocol from [41]:
On input (N, x, T, y)

Set Vdec = nil
While Vdec == nil {
If T = 1 and y = x2T :
Vdec = 1

Else If T > 1:
P computes µ = x2T/2

P sends µ to V
If µ /∈ QR+

N :
Vdec = 0
break

Else:
V samples a random r

$←− Z2λ

V sends r to P
If var is even:
P, V output (N, x′, T/2, y′)

Else:
P, V output (N, x′, T+1

2 , y′
2
)

Set T = T/2
}

Here x′ := xr · µ
(
= xr+2T/2

)
and y′ := µr ·

y
(
= xr·2T/2+2T

)

Masked Halving:
P on input (N, x, T, y):

Picks a pre-evaluated b2
T

for a VDF instance
b s.t.

α = {b2T , b2T/2

, . . . , b2},
β = {(b2T )−1, (b2

T/2

)−1, . . . , (b2)−1}
is precomputed
Sets xb = x.b

The device D on input (N, xb, T ):

Computes γ = {x2T

b , x2T/2

b , . . . , x2
b}

Sends γ to P

P computes y = yb.(b
2T )−1 = γ[0].β[0]

P, V now have (N, x, T, y)

At each halving step:
P computes:

µ = x2T/2

b .(b2
T/2

)−1, x′ := xr · µ, y′ := µr · y

P, V interaction continues as specified

Figure 9: The halving subprotocol and our proposed masked halving protocol for Petrzak’s VDF

incurred is also minimal, as demonstrated in Table 2. Our implementation is based on C++
code from Hosszejni’s work [55]. The numbers reflect computation times on a machine running
Intel’s i7-8565U CPU with a 16GB RAM. Note that these should be used for reference as when
such a protocol is utilized at scale, it will be using specialized, blazing fast hardware [56] for the
computation.

Pietrzak’s VDF construction builds on the RSW [57] time-lock puzzle construction. The RSW
time-lock puzzle is a simple construction which takes an element x ∈ Z∗N and the main goal of the

puzzle evaluation algorithm is to calculate y = x2
T
(mod N), where T specifies the puzzle difficulty.

To convert this into a VDF, Pietrzak’s work builds a protocol where a prover P convinces a verifier
V that it solved an RSW puzzle. For reasons unrelated to our discussion, the VDF protocol utilizes
the quadratic residue group

(
QR+

N , ◦
)
instead (Z∗N , ·). We refer interested reader’s to [41, Sec 2.2]

for a detailed discussion. The protocol proceeds as follows:

• The prover P and the verifier V have an RSW puzzle (N, x, T ) as common input along with
the security parameter λ. Here T ∈ N, N = p · q is the product of safe primes and the input
x ∈ QR+

N .

• The prover P computes T sequential squarings of the input x in the quadratic residue group
QR+

N and sends y = x2
T
to the verifier V.
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• The prover P and the verifier V then iteratively engage in the “halving protocol” as described
below. This subprotocol starts with the common input (N, x, T, y) and the output is either
(N, x′, ⌈T/2⌉, y′) or the verifier outputs 0/1 and the protocol stops.

In the VDF hardware setting, the squarings and the halving protocol steps are computed in
the hardware/computing device. The VDF computing device gets as input (N, x, T ) and the
randomness r for each round of the halving protocol. It outputs the puzzle solution y and the
halving protocol outputs for each round. We present our masked halving protocol in Figure 9
and show its correctness. The goal is to ensure that no adversary who manufactured/subverted
this device can feed in inputs and expect them to malfunction. Therefore, in the masked halving
protocol there is another party the VDF computing device D, other than the prover P and the
V. The masking ensures that each puzzle input to the VDF computing device is transformed
unpredictably before the device sees it. The prover P wants to utilize the VDF computing device
D to evaluate the VDF and an accompanying proof while ensuring that the device can not guess
the original input.

|N | 2T
Evaluation + Proving time

(w/o Masking)
Pre-computation Cost
(⌊log(T )⌋ inverses)

Masking delay
(⌊log(T )⌋ multiplications)

512 28 1.7 ms 2.1× 10−3 ms 3.3× 10−5 ms
216 31 ms 2.9× 10−3 ms 4.1× 10−5 ms
224 2.1 s 3.8× 10−3 ms 6.5× 10−5 ms
232 64 s 3.8× 10−3 ms 6.5× 10−3 ms

1024 28 4.6 ms 3.4× 10−3 ms 4.8× 10−5 ms
216 92 ms 4.4× 10−3 ms 6.1× 10−5 ms
224 7.4 s 6.1× 10−3 ms 7.6× 10−5 ms
232 136 s 6.1× 10−3 ms 7.6× 10−5 ms

2048 28 21 ms 1.7× 10−2 ms 2.2× 10−4 ms
216 656 ms 2.4× 10−2 ms 3.1× 10−4 ms
224 19.5 s 4.1× 10−2 ms 3.2× 10−4 ms
232 308 s 4.1× 10−2 ms 3.2× 10−4 ms

Table 2: Extra delay/computation required for Masked VDFs. For different lengths of N (RSA
modulus) and different number of exponentiations T , the above estimates the extra costs incurred

for masking. Masking delay is a very small fraction of online delay and the overhead log(T )
T decreases

with increasing T .

Masked Halving Correctness. The only change to the original halving protocol by the masked
halving protocol is that instead of directly computing y = x2

T
, masked halving computes xb = x.b

and then computes yb = x2
T

b . To unmask the final result, we compute y = yb.(b
2T )−1. If b

was a previous instance then b2
T

is known already. Furthermore, during the evaluation of b2
T

the intermediate steps can be stored in memory as α = {b2T , b2T/2
, . . . , b2}. The terms in β =

{(b2T )−1, (b2T/2
)−1, . . . , (b2)−1} can be pre-computed by the evaluator. In each halving now, to

compute µ the evaluator computes x2
T/2

b .(b2
T/2

)−1 = x2
T/2

which is the value of µ in the original
halving protocol. This is the only change in the halving process, making masked halving correct
and minimally taxing.
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6 Practical Concerns

Beyond the attacks we propose and analyze, following are real-world concerns relevant to puzzle-
solving devices:

Limits of testing. Previous work [9] models the oracles in the detection game as instantaneous
response oracles. While they point out that the goal of their model is not to evade all forms of
detection, these factors are crucial for real-world attack considerations. Keeping that in mind, our
attacks still work in the model where the detector considers oracle response times. However there
may also exist “out of model” attacks that still can not be detected via our testing regime.
Very strong attackers. Such attackers can come up with numerous attack strategies which are
not input-induced. For example:

• Simple timer-based attack. The attacker fits a small clock in the puzzle solving device.
After a certain time T , the device’s puzzle solving ability drops by some fraction. Notice that
such drops are explained as device aging etc. It is not clear how this attack can be detected
in the real world. Another attack in a similar vein is one where the device’s puzzle solving
ability drops after computing a certain number of puzzle solutions (at any difficulty level).

• Subverting only real-world difficulty parameters. If we use the example of proof of
work mining. The testing of mining devices currently includes testing the number of hashes
computed per second and checking solutions outputted at lower difficulty levels. An attacker
can ensure that the device is subverted only on puzzle instances of difficulty levels relevant in
real-world applications. The detector could then try to verify the devices behavior on puzzles
at real-world difficulty parameters where the solution is already known, for example, known
bitcoin blocks (by feeding in a small nonce range and Merkle root of the proposed block).
The attacker can easily counter such detection by ensuring the device never fails on existing
blocks since this is a set of a few hundred thousand puzzle instances. The detector is then
only left with the option to test the device on the freshly mined blocks available after the
purchase of the device.

“Stronger” input-induced attacks. Many of the attacks we describe and analyze throughout
the paper are input-induced attacks where the trigger inputs are a negligible fraction of the puzzle
input domain. This is mainly to ensure that a polynomial-time detector cannot detect these attacks,
since it cannot find the input triggers that initiate an attack. A subversion attacker might not need
to hide its inputs in practice. For example, it might adopt a strategy where it has a long-enough
time window to reap the benefits of the subversion before being detected.

Real-world detection costs. We model our detector as a PPT party which detects all input-
induced attacks except ones which succeed on a negligibly small set of inputs. However, in the
real-world there are many other factors to consider. Polynomial sampling might result in detection
but this implies a costly testing period in the real world. The puzzle solver is losing valuable
evaluation time every testing cycle. This economic disincentivization of testing means that in
the real world, an attacker can increase its input-induced attack surface. There are also device
life-cycles to consider, for example, a bitcoin mining rig has a life-cycle of less than a couple of
years [58, 51]. The attacker can mount attacks which are active only once in the life-cycle of the
hardware.
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7 Conclusion

The main focus of our work has been on attacks under the following assumptions.

1. Strong detector. In this work we considered defenders (“detection adversaries”) with pow-
erful defensive capabilities, namely the ability to perform statistical tests on hardware that
require polynomial resources (time, queries, bandwidth.)

2. Blackbox device access. The puzzle solving/evaluation device can be accessed as a black-
box. The detector can try to test it on different difficulty and security parameters. Future
work should consider whether stronger models could allow better attacks or defenses against
puzzle solving hardware.

Beyond the attacks we propose and analyze, there are several real-world concerns relevant to
puzzle-solving devices such as the limits of testing, some out of model attacks which are hard to
prevent and other carefully crafted subversion strategies. We provide a discussion on all of these
concerns and consider stronger input-induced attacks and attackers in Section 6. We hope this
discussion serves as motivation for future work.
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A Background

Hashrate/Hashpower. In a proof-of-work based consensus network, for example, the network
of Bitcoin miners, the hashrate of the network is the total number of SHA-256 hashes that can be
calculated by all the devices participating in the network. This is an important metric because the
difficulty of the Bitcoin proof-of-work is determined as a function of the network’s hashrate [59].
It is adjusted every 2 weeks according to changes in the network hashrate. The hashrate of an
individual miner then is the total number of hashes the individual miner (device) can compute.
This again is an important metric because a proof-of-work based consensus is subject to a number
of attacks when a single attacker controls a large fraction of the network’s hashrate.

51% attacks and Selfish Mining. A number of attacks have been proposed against proof-of-
work blockchains. The most well-known is the 51% attack [23], which refers to a situation where
a single party/cooperation has control of a majority of the network hashrate and can therefore
“fork” and roll back transactions. A related attack called selfish mining [35] has the attacker mine
a parallel competing blockchain fork, without publishing it. This attacker then continues to mine
on this secret fork while the honest miners continue to mine on the previous “stale” version of
the blockchain. The attacker can now judiciously make blocks from its secret branch public. This
renders the computational effort of the honest miners moot, while also earning mining rewards for
the attacker disproportionate to its hashrate. An attacker requires 1/3 of the network’s hashrate
to successfully mount such an attack.

Bitcoin block hashing algorithm. In the real world, the Bitcoin proof-of-work solution consists
of the following fields [21]:

• Version (32-bits): Block version number

• hashPrevBlock (256-bits): Hash of the previous block

• hashMerkleRoot (256-bits): Merkle tree root of all the transactions to include in the proposed
block

• time (32-bits): Proposed block timestamp as seconds since 1970− 01− 01T00 : 00 UTC

• diff (32-bits): Difficulty target

• nonce (32-bits): the nonce for which H(nonce, H(hashMerkleRoot, hashPrevBlock)) has the
correct number of preceding 0′s as specified by diff
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B Hardware Errors in Mining Devices

Hardware errors in mining devices reflect the inputs on which the mining ASIC fails to compute.
Figure 2 shows how these errors appear on the mining software [36], with very little information
on why the error occurred and on what particular input. We found this issue to be rampant across
ASIC-based mining devices across networks such as Bitcoin, Litecoin etc. Following is a list of
discussions from various forums on mining operations which report this as a concern, as evidence:

• From 2014-present, multiple reports (Bitcoin, Litecoin) on Reddit’s mining forums on mining
devices with hardware error rates ranging from a few every hour to a few every minute

• From a 2015 discussion on another bitcoin mining forum: Multiple users report high hardware
error rate stats

• From April, 2020: High failure rates reported for latest Bitcoin mining devices on Cointele-
graph [60]

C Malleability of Blockchain’s Entropy

We adopt the model of an adversary who malleates a blockchain’s entropy from the work of Pierrot
and Wesolowski [49]. This model is specifically applicable to a proof of work based blockchain.
They first start by assuming that the underlying hash function used for proof of work is secure.
For d being the difficulty of the proof of work, each new block contains d bits of computational
min-entropy, this was first justified in [50]. We know that there exists a cryptographic extractor [61]
Ext, which maps each block’s d bits of min-entropy to ⌊d/2⌋ of near-uniform bits.

The adversary’s attempt to mine favorable blocks is then captured by the following game played
between a set of honest miners and an adversary A. The goal of the adversary is to bias the
probability distribution of the extract of the decisive block, which is a future block of interest to
the adversary. The adversary holds influence over a δ fraction of the blockchain. For sA being the
number of hashes per second the adversary can calculate and s being the number of hashes per
second all miners combined (including A) can calculate,

δ =
sA
s

The game starts when a fixed initial block, indexed 0 is received and ends when block height
n+ f is reached. Here n is the block height of the decisive block and it takes f additional blocks to
finalize the decisive block. This is to ensure that there are no forks of the blockchain which would
alter the decisive block. The adversary wins if the extract x of the decisive block B, Ext(B) = x
falls in a subset favorable to the adversary. We denote this via the indicator function, I where
I(x) = 1 if x ∈ F and I(x) = 0 otherwise, for F being the favorable set for the adversary.

Our interest lies in the setting where the extractor Ext is private and set by the adversary
A. The extractor values are used by the adversary who mounts the load shedding attack as a
trigger. The load shedding adversary therefore uses the blockchain to signal the mining evaluation
hardware/software to malfunction.
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D Real-world Cryptographic Puzzles

See figure D.

E Ethereum’s Beacon Chain

Ethereum plans on using VDFs as a source of unpredictable randomness. An example of this
requirement in Ethereum 2.0 is the following. A small of group of validators are required to
progressively build a chain of randomness, this chain is termed the “Beacon-chain”[22]. Assuming
a global clock and splitting time into contiguous 8-second blocks and 128-slot epochs, one value
O is generated per epoch E . This generated random value is used to select a validator who then
gets the opportunity to propose the next block to be added to the blockchain and consequently
reaps the block reward. In the ideal scenario, with unbiased randomness the frequency with which
a validator is selected is directly proportional their stake in the system. However, if a malicious
actor is successful in biasing the randomness they can sample strings such that they can select
the one which benefits them most. Currently the randomness O is obtained from the reveals of a
RANDAO commit-reveal scheme used to generate a random number where the commits are inputs
produced by the validators during epoch E . In a RANDAO commit-reveal scheme, every beacon
chain proposer is committed to 32 bytes of local entropy. (In practice a chain of commit-reveals is
setup with a hash onion for validator registration.) Beacon chain proposers may reveal their local
entropy by extending the canonical beacon chain with a block. Honest proposers are expected to
keep their local entropy private until their assigned slot. The beacon chain maintains 32 bytes of
on-chain entropy by XOR-ing the local entropy revealed at every block. However such a commit-
reveal scheme is biasable: a malicious validator that controls the last reveal can choose to reveal
or not, giving them some control over the choice of O based on their decision. Therefore, one
proposed way to make O unbiasable is to pass O through a verifiable delay function (VDF) which
is guaranteed to be slow to compute. This is done so that all validators must choose whether to
reveal or not before they know the output of the VDF.

Let B(·, bi) be a function which produces biasable randomness on input an epoch i and the
32 bytes of local entropy bi from the beacon chain proposer selected for this round. Then the
randomness beacon R(·) output for epoch i is computed as follows:

B(i, bi) = B(i− 1, bi−1)⊕ bi

R(i) = VDF.Eval(pp,B(i− T, bi−T ))

Assuming it takes real world time T for the commodity hardware to compute the VDF output.
This construction ensures that the VDF input is available at the same time to all parties interesting
in computing its output. The Ethereum foundation may spend over $15 million [56] for the devel-
opment of specialized hardware to provide to the validators, in order to achieve lowest evaluation
time for any VDF parameters.
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Definition D.1 (Bitcoin Proof of Work as a Cryptographic
Puzzle). Bitcoin proof of work can be formalized as a crypto-
graphic puzzle as follows:

• Setup(1λ,∆)→ pp: The security parameter 1λ contains
the specifications for the hash function (SHA-256) used
for Bitcoin’ proof of work including the number of bits of
security it provides. The difficulty parameter is an inte-
ger which indicates minimum amount of leading zeroes
required for a valid proof of work solution.

• Pre(x′, aux)→ x: The unprocessed puzzle input x′ is the
previous block header/proof of work. The auxiliary in-
put aux is the Merkle tree root of the transactions con-
firmed and included in the proposed block. The pre-
processed input is computed as x = H(aux, x′).

• Eval(x, aux)→ y/ ⊥: The evaluation algorithm checks if
for any input r in the nonce range, the hash H(r, x) has
≥ ∆ many preceding zeroes. If it finds such a solution it
outputs y = r, otherwise outputs ⊥.

• Verify(x, aux, y) → 0/1: If H(y, x) has ≥ ∆ many pre-
ceding zeroes, output 1 and 0 otherwise.

It is worth noting that in the real world, the pre-processing
phase can possibly be completely predictable. Typical bitcoin
mining logic is to include transactions with the highest miner
fees. If this is the case then the input to the Eval algorithm
become predictable. Since the inputs to Eval are the inputs to
the mining rig, this opens up the possibility of input-induced
attacks which we discuss in Sections 4 and 4.3.2. However, this
does not imply that Bitcoin proof of work is a bad cryptographic
puzzle construction. This particular issue can be easily fixed by
introducing some entropy into the process of selecting transac-
tions.

Definition D.2 (Verifiable Delay Functions). A verifiable delay
function (VDF) consists of the following algorithms:

• Setup(1λ,∆) → pp: The VDF generation algorithm
takes as input a security parameter 1λ and a difficulty
parameter ∆ and outputs public parameters pp which fix
the domain X and range Y of the VDF and other infor-
mation required to compute a VDF or verify a solution.

• Eval(pp, x) → (y, π): The VDF evaluation algorithm
takes as input the public parameters pp, an input from
the domain x. It outputs a VDF solution y and a proof
π.

• Verify(pp, x, y, π) → 0/1: The VDF verification algo-
rithm takes as input the public parameters pp, an input
from the domain x, an input from the range y and a
proof π. It outputs either 0 or 1.

Additionally, VDFs must satisfy the correctness, soundness and
sequentiality definitions as defined below.

Definition D.3 (Correctness). A verifiable delay function is
correct if ∀λ,∆, pp ← Setup(1λ,∆), and ∀x ∈ X if (y, π) ←
Eval(pp, x) then Verify(pp, x, y, π) = 1.

Definition D.4 (Soundness). We require that an adversary can
not get a verifier to accept an incorrect VDF solution.

Pr

[
Verify(pp, x, y, π) = 1 pp← Setup(1λ,∆)

y ̸= Eval(pp, x) (x, y, π)← A(1λ,∆, pp)

]
≤ negl(λ)

Definition D.5 (VDF as a Cryptographic Puzzle). A VDF can
be formalized as a cryptographic puzzle as follows:

• Setup(1λ,∆) → pp: This algorithm has inputs and out-
puts exactly similar to as described in VDF.Setup().

• Pre(x′, aux)→ x: Set aux = nil and x = x′.

• Eval(x, aux)→ y/ ⊥: The evaluation algorithm proceeds
exactly as described in VDF.Eval(). The output y is a
tuple consisting of a VDF solution s and its proof π,
y = (s, π).

• Verify(x, aux, y) → 0/1: Outputs the result from com-
puting VDF.Verify(pp, x, s, π).

VDF security is described using a sequentiality game played
between a challenger and an adversary as defined below:

Definition D.6 (Sequentiality). The sequentiality game cap-
tures the notion that no adversary should be able to compute
the output for Eval on a random challenge in time less than the
requisite time t even with arbitrary parallelism. For an exact
description of the game and more details we refer readers to
Boneh et al’s [40] work.

Definition D.7 (Proof of Space). A proof of space is defined
using the following algorithms:

• Init(N, pk) → S: The initialization algorithm takes as
input a space parameter N ∈ N (where N ⊂ Z+ is
the set of valid parameters) and a public key pk for a
signature scheme. It outputs S = (S.Λ, S.N, S.pk) where
S consists of the space taxing file the prover needs to
store.

• Prove(S, c)→ π: The prove algorithm on an input S and
a challenge c ∈ {0, 1}w in the challenge space, outputs a
proof π.

• Verify(S, c, π) → 0/1: The verify algorithm accepts the
proof and outputs 1 if it is a valid proof of space for the
given input, challenge pair. Otherwise it outputs 1.

Additionally, a PoSpace must satisfy the completeness and se-
curity definitions as defined below.

Definition D.8 (PoSpace Completeness). Perfect complete-
ness implies that ∀N ∈ N , c ∈ {0, 1}w,

Pr[Verify(S, c, π) = 1] = 1

where S ← Init(N, pk) and π ← Prove(S, c).

Definition D.9 (PoSpace Security). Informally, proof of space
security states that an adversary who stores a file of size con-
siderably less than N bits should not be able to produce a valid
proof when given a random challenge without using a significant
amount of computation. For an exact description of the game
and more details we refer readers to [24, 29].

Figure 10: Real world puzzle definitions under the Cryptographic Puzzle lens
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