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Abstract

In this work we propose time-deniable signatures (TDS), a new primitive that facilitates
deniable authentication in protocols such as DKIM-signed email. As with traditional signatures,
TDS provide strong authenticity for message content, at least for a sender-chosen period of
time. Once this time period has elapsed, however, time-deniable signatures can be forged by
any party who obtains a signature. This forgery property ensures that signatures serve a useful
authentication purpose for a bounded time period, while also allowing signers to plausibly
disavow the creation of older signed content. Most critically, and unlike many past proposals
for deniable authentication, TDS do not require interaction with the receiver or the deployment
of any persistent cryptographic infrastructure or services beyond the signing process (e.g., APIs
to publish secrets or author timestamp certificates.)

We first investigate the security definitions for time-deniability, demonstrating that past
definitional attempts are insufficient (and indeed, allow for broken signature schemes.) We then
propose an efficient construction of TDS based on well-studied assumptions.

1 Introduction

Many communication systems use cryptographic signatures to verify the authenticity of data sent
from one party to another over untrusted networks. While cryptographic authentication is standard
in end-to-end encrypted messaging systems, it is also increasingly being deployed within tradition-
ally non-encrypted protocols such as SMTP email. Specifically in the email setting, protocols
such as DKIM, DMARC and ARC [13] are routinely used to add non-repudiable digital signatures
to email in transit between Mail Transfer Agents (MTAs): these signatures allow recipient spam
filtering software to verify that it originates from the claimed sender.

While cryptographic authenticity is valuable for preventing spam and spoofing of email traffic,
DKIM signatures have been re-purposed for goals that may not have been anticipated by the
designers of these protocols.! For example, news organizations routinely verify the authenticity
of leaked or stolen email collections using DKIM signatures [2, 31, 39]: this is possible because
DKIM signing keys are long-lived, and the protocol’s non-repudiable signatures can be verified
long after email has been received and processed. To facilitate such verification, organizations such
as the Associated Press and Wikileaks even publish detailed instructions and tools for verifying

Indeed, many early deployments of DKIM used weak signing keys, and some DKIM standards authors proposed
using e.g., 600-bit keys to balance the risks and benefits of DKIM [13].



the authenticity of DKIM signatures in leaked and stolen email corpora. Since email signing is
implemented by commercial mail providers rather than end-users, users of popular services cannot
opt out. These developments have ignited a technical debate around the desirability of long-
term non-repudiability guarantees in widely-used protocols such as email [24], and raised questions
around the value of adding cryptographic deniability to these systems.

The need for deniability. Cryptographic deniability is a property that allows communication
participants to disavow authorship of messages, e.g., in the event that they have been leaked or
stolen. This feature has frequently been incorporated in interactive messaging protocols [9, 3, 40],
which historically realize deniability through the use of interactive key exchange protocols and
symmetric authentication primitives such as MACs. Achieving deniable authentication in email
authentication protocols such as SMTP/DKIM is more challenging, since these protocols support
non-interactive and asynchronous delivery via multiple intermediate recipients. Thus interactive
protocols are ruled out, and even designated-verifier solutions can be more challenging due to the
presence of intermediaries.

Despite these challenges, the problem of incorporating deniability for the email setting has
recently received some attention. For example, in Usenix Security 2021, Specter et al. proposed
two technical replacements for DKIM signing that are designed to facilitate deniability. Both
protocols ensure that messages are digitally signed to enable sender-authenticity verification, but
feature a process wherein senders, recipients and even third parties can create deliberate forgeries
after the necessary anti-spam and spoofing checks have been completed. The two protocols employ
different techniques: the first relies on the sender to author forgeries on request and/or publish
expired secret keys, while the second employs a trusted time server that publishes cryptographic
timestamp certificates that allow forgery of signatures after some period of time has elapsed. Others
have made even simpler proposals wherein DKIM providers simply rotate and publish existing
DKIM signing keys on a periodic basis [12, 24]. Each proposal seeks to build signatures that are
unforgeable for a period of time necessary to support short-term transport checks, but become
forgeable after this period.

The major limitation of the proposals above is that forgery requires the active cooperation of
signers, or else depends on the continuous operation of new trusted infrastructure such as “time
servers” that publish keys or timestamp certificates on a periodic basis [38]. The challenge in email
systems is that the end-users affected by non-repudiable authentication (e.g., Gmail customers) rely
on third-party providers to deploy these infrastructure services and make them available for the
often-controversial purpose of forging past email. If this infrastructure is not deployed, then even
the Internet-wide adoption of a deniable signature standard will not provide deniability in practice.
What is needed is a signature scheme that can be used in place of a normal signature scheme
within protocols; provides strong authenticity for a period of time; and then subsequently becomes
plausibly forgeable by any party who simply obtains such a signature, with only the requirement that
parties have an (approximately) shared view of time. We refer to such signatures as time-deniable
signatures.

Properties of time-deniable signatures. Time-deniable signatures operate much like a normal
signature scheme, but with some important differences. Like standard digital signatures, time-
deniable signatures are designed to be secure and non-repudiable for at least some time period
following signing. The duration of this time period is strictly limited, however: any party who
obtains a signature on some message M can use it as input to a new forging algorithm called
AltSign that, after enforcing some approximate time delay, will output a forgery on a new chosen



message M’. A key requirement of these schemes is that neither signing nor forging should require
the cooperation of any other party or infrastructure. This time delay is therefore enforced using
a specific computational assumption: the AltSign algorithm requires the forger to perform a pre-
specified number of sequential operations §, where the minimum time required for this calculation
is roughly as long as the desired length of the unforgeable phase.

Of course, the ability to forge signatures has no bearing on deniability if the resulting forgeries
are easily distinguishable from authentic signatures. To achieve plausible deniability, we therefore
require that forgeries are indistinguishable from signatures produced using the ordinary signing
algorithm, and in fact that even linking forgeries to the specific signatures that were used to create
them should be challenging. This indistinguishability property is a fundamentally novel property
of this work, that is not present in previous attempts to solve this problem [4, 25]. It also has
important follow-on implications: since forgeries are indistinguishable from true signatures, this
implies that any forgery must be useful to create still further forgeries.

Finally, we wish time deniable signatures to be useful in practice. Given the description above,
time-deniable signatures would be of limited usefulness: the revelation of a single signature would
allow for an unlimited number of forgeries, rendering the signing key useless for authenticating
further messages. To remove this limitation, we slightly relax our forgery and unlinkability require-
ments. Our constructions allow for renewability via an additional timestamp t field that is specified
in the signing algorithm and carried with the signature. Forgers can produce a new signature on
a message M’ provided the new signature carries a timestamp t' < ¢. For example, in a practical
deployment, the timestamp t can be set to correspond to some real-world time counter, and recipi-
ents can choose to accept as authentic any signature with timestamp greater than ¢ — t5 where ¢ is
the minimal expected time needed to compute a forgery.? This approach requires only that honest
senders and receivers possess loosely synchronized clocks.

Our contributions. In this work we investigate the problem of building time-deniable signatures.
We first develop formal definitions for this new primitive, and then present a construction that is
based on several efficient components. Finally, we implement our approach and show that it is
practical enough to deploy today. Concretely, we provide the following contributions:

Defining time-deniable signatures (TDS). We propose new definitions for the concept of time-
deniable signatures, and propose strong security definitions for this new primitive. Defining
security for time-deniable signatures is surprisingly difficult: in the course of developing our
definitions, we found that previous efforts to formalize the security of deniable authentication
schemes fall short. For example, we show that the security definitions for some related
primitives [25] contain subtle weaknesses that admit practically-insecure constructions. To
provide evidence for the robustness of our definitions, we prove that our definitions are strictly
stronger than these earlier definitions.

Efficient constructions. To demonstrate that the TDS primitive is practical, we propose an efficient
construction of time-deniable signatures based on well-studied cryptographic assumptions.
Our constructions improve on previous work [25] in that they do not require any a priori
bound on the number of time epochs that the scheme can handle. We also show that TDS

2This naturally relaxes the unlinkability requirement: given a pair of signatures oy, , o¢, with timestamps ¢; < ¢y it
cannot be the case that oy, is the original signature and oy, is the forgery. However given a sufficiently large collection
of signatures containing forgeries and original signatures, this approach still provides a degree of uncertainty for all
but the most recent signature.



can be realized using standard assumptions in pairing-based cryptography and sequential
puzzles based on repeated-squaring assumption [35], without the need for zkSNARKSs or
other heavy-weight constructions.

Implementation and performance experiments. To further motivate the usefulness of TDS in
systems applications, we implement our TDS constructions and show that the scheme has
practical runtime and bandwidth performance for the applications we consider. In particular,
we show that our scheme has a fast key setup time, which is particularly important for a
scheme with an unbounded number of time epochs.

2 Technical Overview

We now give an overview of the main contributions in this work, starting with formalizing the
notion, before moving on to the constructions.

2.1 Defining Time-Deniable Signatures

We study signature schemes where signatures remain valid for a short period of time after creation.
Specifically, we consider the notion of an unforgeability period that starts when a signer generates
a signature for a message using its signing key sk, and the signing algorithm Sign. But once the
unforgeability period elapses, any participant in the system can compute a “fake signature” (aka
forgery). To allow computation of forgeries, we consider an alternate signing algorithm AltSign,
that does not require the signing key sk to generate signatures. Intuitively, as long as the signatures
generated by Sign and AltSign appear indistinguishable, such a notion provides deniability after the
unforgeability period since a signer can claim that a signature attributed to them could have been
generated by anyone.

Key Challenges in the Definition. There are several key considerations towards formalizing
the above intuition and defining time-deniable signatures.

Challenge I: Preventing pre-computation of forgeries. Recall that any party can compute a forgery
(via the algorithm AltSign) after the unforgeability period expires. But how do we ensure that a
party cannot execute AltSign in advance, thereby having the ability to sign any message within the
unforgeability period?

One natural approach is to bind signatures to some unpredictable cryptographic beacon, perhaps
generated at regular intervals by a centralized server or a blockchain [18, 33|. For example, when
signing a message m (via Sign or AltSign) one might actually sign the pair (m, b) where b is a beacon
released at a time known by the receiver. This value b can then be used as the “seed” to allow
forgery using AltSign, and verifiers can use the known publication time of b to determine whether
the signature is still within the unforgeability period. Such models have been considered in prior
works, including the TimeForge scheme of Specter et al. [38] and a recent proposal by Bonneau et
al. [4].

In this work, we seek to avoid the use of unpredictable timestamps or centralized servers. In
our notion, the Sign and AltSign algorithms do indeed take as input a timestamp ¢. Assuming that
receivers possess loosely synchronized clocks, these timestamps can be used to verify that a received
signature was authored within the unforgeability period. However, crucially, these timestamps are
simply the output of a predictable clock operated by the signer, which means that we do not require




any security properties of this input, nor do we require unpredictable beacons or new infrastructure
to produce them. To prevent pre-computation, we instead model AltSign such that it requires a
valid signature on some pair (m,t) as input. This ensures that forgers do not have the necessary
input(s) to pre-compute forgeries until they obtain a signature.®

Challenge II: Selecting forged timestamps. In the proposal above, AltSign requires a valid signature
on some time ¢ (and any message) in order to compute a forgery. Naturally the resulting forgery
will also need to contain its own timestamp t’. The selection of #' is crucial, however: if this
forged timestamp can be chosen arbitrarily by the forger, then an attacker may be able to forge
new signatures that appear (to an honest receiver) to be within the unforgeability window, even
when the original signature was not. One obvious solution to this problem is to restrict the forged
timestamp to t' = ¢t. Unfortunately, this restriction weakens the deniability properties of the
signature scheme: a signer can deny having signed a particular message at time ¢, but it cannot
deny having signed some message at time ¢. To achieve stronger deniability where a signer can also
deny having signed any message at time ¢, we further strengthen the AltSign algorithm. Namely,
we require that on input a signature on timestamp ¢, AltSign can compute forgeries for any message
m and any time stamp ¢’ < .

Challenge III: Avoiding strong clock synchronization. The closely related prior work of epochal sig-
natures by Hiilsing and Weber [25] considers a security notion that crucially relies on various
participants having synchronized clocks. Roughly, in a epochal signature scheme, (real) time is
divided into discrete epochs where a new key is generated at the start of every epoch. Signatures
are associated with the epoch they were generated in, where unforgeability requirements state that
no adversary can forge signatures for an epoch during the epoch. As we show in §3, the security
definitions for epochal signatures are fragile: there exist epochal signature schemes that are secure
under the given definitions and yet become completely insecure when clocks are even slightly out of
sync. This problem stems from the fact that the unforgeability notion proposed for the primitive
puts strict time limits on the adversary while it queries a signing oracle. We show that if enforce-
ment of these query restrictions is violated (even slightly) by a real-world signing oracle at epoch
e, an epochal signature scheme can become catastrophically insecure for all future epochs.
Unfortunately, avoiding such outcomes is not easy, and in this work we seek to strengthen our
security definitions to avoid such issues. We do this in two ways: unlike [25], our definitions model
the unforgeability period computationally — through the widely-adopted technique of bounding the
number of sequential computation steps the adversary may compute [35, 7, 41, 34, 17]. While this
still requires conversion when used in the real world, it does not embed the conversion into the
security definition. Much more importantly, our definition allows the adversary to participate in
a “pre-processing” phase to ensure the robustness of our notion in scenarios where there may be
clock synchronization issues. During this phase, the adversary is given free reign (within only a
polynomial time bound) to query the signing oracle and forge signatures. This phase significantly
loosens the restrictions on the adversary, allowing them to query for signatures and run the AltSign
algorithm (or any other process) as many times as they wish. Once the pre-processing phase is
complete, the adversary then enters a second forgery phase in which their runtime is more strictly
bounded. Our sole restriction is that the forgery produced in the second phase must be computed
on a timestamp t* that is greater than any timestamp queried during the pre-processing phase.

3Indeed, we show that the need for AltSign to use an existing signature (or portion thereof) to produce a forgery
is seemingly inherent if we do not want to use secure infrastructure. We elaborate on this point in Appendix G.



Our Definition. We are now ready to provide an (informal) definition of time-deniable signatures.
We refer the reader to the technical sections for more details.

The protocol is parameterized by A, the duration of the unforgeability period, and described
by the algorithms KeyGen, Sign, AltSign and Verify. The KeyGen and Verify algorithms are the
same as standard signature schemes while the Sign algorithm, also similar to the standard notion,
takes in as input a message m and time stamp ¢ to generate a signature on (m,t). The main new
component is the algorithm AltSign which takes as input a message m’, time stamp ¢, signature
O(m,t) such that t' < t, and uses the verification key to generate a signature T (m! 1)

For correctness of the scheme, we require that AltSign generates a verifying signature as long
as its given as input the output of the Sign algorithm, or (repeated applications) of the AltSign
algorithm. We now provide an overview of the two key security properties required by our notion.

Unforgeability. This property captures the notion that no adversary capable of computing fewer
than A sequential steps can generate a forgery. Specifically, we allow an initial pre-processing stage
for the adversary where it is not bounded by the number of sequential steps, gathering as much
information as it can. At the end of this stage, say at timestamp t*, it passes along any information
onto the next stage where the adversary that runs in at most A sequential steps needs to produce
a signature for a message with time stamp > t*.

Deniability. This property asks an adversary to distinguish between a “fresh” signature generated
using Sign, and a signature generated using AltSign. We formalize this by defining two experiments,
where the adversary is allowed to specify a tuple (my,t1,01 = Sign(mi,t1), ma,t2) with to < t;.
In the first world, the output is simply the signature o2 = Sign(mag, t2,sk), whereas in the second
world the output is oy = AltSign(mg, t2,01,vk). We say a TDS is deniable if no computationally
bounded adversary can distinguish the two with a significant probability.

We refer to the above description of deniability to be “1-hop-deniable”, i.e. a signature generated
via Sign is indistinguishable from one generated via AltSign. In the technical section, we extend this
notion to “k-hop-deniability”, which intuitively corresponds to the indistinguishability between a
signature generated via Sign and one generated via k applications of AltSign.

2.2 Construction

Time-Deniable Signatures from Delegatable Functional Signatures. Our construction
centers around the following natural idea: with each signature produced by the signer, we leak a
restricted signing oracle that can be used to forge later signatures. A signing oracle, as the name
suggests, allows a party with access to the aforementioned oracle to sign any message of its choice.
For instance, the signing key can be viewed as an oracle since it allows one to sign any message of
their choice. A restricted signing oracle limits the messages that can be signed. Thus, continuing
with our analogy of signing keys corresponding to an oracle, a restricted signing oracle corresponds
to a signing key that is restricted in a fine-grained manner.

When the Sign algorithm generates a signature on message m and time stamp ¢, it also reveals
a restricted signing key sk, that can be used sign any message m’ with time stamp ¢’ < ¢. Such
a key can then be used by the AltSign algorithm to create forgeries. Revealing the restricted key
with the signature, however, allows anyone in possession of the signature to create forgeries during
the unforgeability period. To prevent this, we need to hide this restricted signing key until after
the unforgeability period, and we do so using time-lock puzzles [35]. Intuitively, a time-lock puzzle
allows one to “lock” a secret s for a predetermined amount of time (i.e., time parameter). Thus,



the output of the Sign algorithm will consist of the signature o,,|, along with the time-lock puzzle
containing the secret sk;, computed with time parameter A. We note that a similar approach has
been considered in constructing notions such as epochal signatures [25], and we refer the reader to
Section 3 for a more detailed comparison.

To implement restricted signing keys, we turn to the notion of functional signatures (FS) [10, 6,
5]. Functional signatures are equipped with functional keys sk s (instead of “regular” signing keys)
such that it allows one to sign f(m) for any message m. We consider the following specific function
for our application:

_Jtllm t<T
fr(t,m) = { 1 otherwise } (1)

We call such functions prefiz functions (the function prepends the time stamp to the message). It
is evident from the above description that with a functional key sk one can generate a signature
for any message m and time stamp ¢ as long as t < 7.4

For our TDS construction, we leverage specific properties of the functional signature scheme.
We provide a more general (and detailed) definition in the technical sections, but for the purposes
of the overview, we shall discuss the relevant properties of functional signatures for the specific
function fr described above: (i) delegatability: given a key sk, for function fr, using only public
parameters, one can derive a key sky , for a function fr- if T' < T; (ii) key indistinguishability: it
should be computationally infeasible to differentiate between a fresh key sk and a key derived ;
and (iii) unforgeability: it should be computationally infeasible to generate signatures Opm||¢ unless
one has a key sk;, where ' > ¢. While delegatability has previously been studied for functional
signatures, the notion of key indistinguishability is new to our work. The latter is crucial towards
achieving deniability.

Putting things together, we have:

Sign On input message m and time stamp ¢, the Sign algorithm generates the key sk;, (using the
master secret key, see technical section for details), and uses it to compute the signature oy |,.
It then encrypts the key sk, within a time-lock puzzle with time parameter A.

AltSign On input message m/, time stamp #', and signature oy, || TimeLock(sky,), the AltSign algo-
rithm first solves the time-lock puzzle to obtain sk;,. It next uses the delegation functionality
to derive a key sk fu from sky, and then follows the description of the Sign algorithm.

A potentially useful property of the above approach is that the sequential part of the computa-
tion performed by AltSign, namely, solving the time-lock puzzle, can be reused for computing many
forgeries in parallel. This is because once the restricted signing key is obtained — a one-time work,
it can be used to compute signatures in parallel.

Intuitively, we prove unforgeability by leveraging the unforgeability of the functional signature
scheme and the security of time-lock puzzle, while deniability follows from the key indistinguisha-
bility property of the functional signature scheme.

Prefix Function FS from Hierarchical Identity Based Encryption. We construct functional
signatures for prefix functions from Hierarchical Identity Based Encryption (HIBE). At a high level,
HIBE is an encryption scheme that allows one to encrypt to identities, (treated as bit strings in
this work) such that only someone in possession of the secret key corresponding to the identity can

“Note that while we have thus far described signatures on messages of the form m||t, the above description of fr
flips it to be t||m. Looking ahead, the change is due to our construction of functional signatures.



decrypt messages. The hierarchical nature of the scheme allows for the delegation of keys, i.e. if
one is in possession of a key for identity Z which is a prefix of an identity Z’, one can derive the
key for Z' from the key for Z. The identities in our setting will correspond to the nodes of a binary
tree with nodes labeled by binary strings corresponding to their path from the root (left is 0, right
is 1).

HIBE schemes can be used generically to construct a signature scheme [8] - to sign a message
m, use the HIBE scheme to generate a key for the “identity” m with the key corresponding to the
signature. The verification of the signature is performed by encrypting a random message to the
message (treated as the identity), and using the signature as a key to check whether the decryption
is correct.

In our setting, the identities will be the bit strings corresponding to t||m. Structuring as above
has the following benefit - if one were in possession of a HIBE key for a time stamp ¢, then one can
derive keys for t||m for any message m since t||m is “lower” in the hierarchy from ¢. Therefore to
sign a message m at time stamp ezactly t it suffices to possess the key for ¢, which serves as the
signing key. But recall from the description of f; in the prior section, the signing key corresponding
to fi should allow one to sign messages for any time stamp smaller than ¢. A naive way would be
to generate the signing key for f; would be to concatenate the HIBE keys for all ¢’ < ¢, but this is
approach is clearly infeasible since the signing key would grow linearly with the total number of
possible time stamps.

To overcome this efficiency barrier, we leverage the tree structure of the HIBE scheme with the
following insight - it suffices to have a small number of keys as long as we are able to derive keys
for any ¢ < t. At a high level, the signing key sk 7, Will consist of keys for all identities that are
the left siblings of the nodes along the path from ¢ + 1 to the root®, resulting in at most log(t)
many keys. A detailed description is provided in the technical sections, but here we provide an
illustrative example.

O O O O O O O O

skooo skoo1 sko1o sko11 skioo skio1 sk110 skii1

Figure 1: This tree represents the hierarchical nature of the identities in our HIBE scheme. Each
node in the tree besides the root represents a HIBE secret key sk;y for the identity id. Therefore,
by our description Trace(root — (), 110) will constitute the nodes which represent the secret key for
fi1o0, i.e. sky, o = (sko,skyg,ski1p). Using this set, all messages with prefixes in the green nodes can
be signed.

In the HIBE identity tree of Figure 1, the key corresponding to fig is both sky and skyg. To

®One can also view it as the nodes in the stack during the depth first traversal of the (identity) binary tree when
node t + 1 is visited.



derive a key for fyo, one executes the HIBE’s delegate algorithm using skq to create the key skqq.
In fact, to derive a key for sk fu from sk, for any t' < t one can simply use the HIBE delegation
algorithm, i.e. there is no need to run the key generation algorithm afresh.

Looking ahead, we want to allow the adversary to choose the message it wants to compute a
forgery on after it has seen other signatures, we require the HIBE scheme to be adaptively secure
(i.e. the adversary can choose the identity of the HIBE scheme it wants to break after seeing keys
for other identities). HIBE schemes satisfying the necessary requirements can be instantiated e.g.,
assuming the Decisional Linear (DLIN) assumption on Bilinear groups of prime order [27].

3 Related Work

Concurrent work. A concurrent and independent work of Arun et al. [4] also studies a notion
similar to time-deniable signatures. Similar to our work, they make use of sequentially-ordered
computation as a means to enforce time delay during which signatures are unforgeable, but become
forgeable afterwards. However their work considers a different models than ours. Specifically, their
system relies on the use of unpredictable beacons that are presumably released periodically by some
trusted outside source. In contrast, we do not do rely on any randomness beacons or time servers.
Unlike our work, they also explore time-based deniability in proof systems.

Epochal Signatures. Our work is closely related to the prior work on epochal signatures [25].
At a very high level, epochal signatures aim to achieve deniability in a manner similar to ours -
by leaking a constrained key. In epochal signatures, (real) time is partitioned into discrete epochs
with a key update mechanism at the start of every epoch. Any signature generated during epoch
1 additionally include the keys for prior epochs, allowing for forgery of signatures of any epoch
< i (but not epoch 7). The constructed epochal signature in [25] leaks only a single key with
the property that from a key of epoch 4, k;, one can retrieve the key of epoch i — j, k;_; with j
applications of a “key retrieval” function, but security requires that it is impossible to retrieve keys
for epochs > 7 from k;.
In the following, we describe some key differences between the two works.

Bounded vs Unbounded Use. Unlike our work, the system proposed in [25] is limited to be bounded
use. Specifically, the number of epochs that their system can support is bounded ahead of time.
This is an outcome of the running time of their system setup, which is linear in the number of
epochs.

In practice, the granularity of each epoch and the number of epochs must be fixed before
their system is initialized, and once the total number of epoch surpass the bound, the entire system
needs to be reset from scratch, a scenario that is clearly undesirable. For epochs that are sufficiently
small, such a restriction would limit the total number of signatures that the system can support.
Indeed, for similar reasons, the broad question of bounded vs unbounded use has been studied in
various contexts in cryptography such as bounded vs unbounded query chosen-ciphertext secure
encryption [15], depth-bounded vs depth-unbounded hierarchical identity-based encryption [28] and
homomorphic encryption [20], bounded-collusion vs unbounded collusion in functional encryption
[36, 23|, and more. In all of these cases, there are significant challenges and overheads (in terms

%In their work, they consider an additional deniability parameter V such that signatures for epoch i include keys
for epochs i — V' and earlier allowing for V' epochs where the signature is valid. But for the purposes of this discussion
we describe it in the above simplified manner.



of assumptions, efficiency, etc) in going from bounded system to an unbounded one. As such, we
view our improvements over [25] in this regard to be a significant one.

Need for Clock Synchronization. As discussed earlier, the unforgeability notion in [25] requires the
participants to have perfectly synchronized clocks. We now demonstrate that if such a requirement
is not met, then the consequences can be catastrophic and result in a compromise of security for all
future epochs. Specifically, we construct a secure epochal signature scheme where the unforgeability
property can be broken when the clocks are slightly out of sync. We also show that the same scheme
— translated to the setting of time-deniable signatures — is mot secure as per our definition, thus
demonstrating that the latter is a strictly stronger notion.

In the following, we give an over-simplified presentation of our counter-example to convey the
general idea. The full counter-example is more involved (due to technical reasons) and is presented
in Appendix H.1.

Intuitively, we exploit the restricted signing oracle in the unforgeability definition of epochal
signatures which prevents an adversary from receiving signatures in any epoch e outside of a fixed
real time window of size At. Our epochal signature scheme makes use of a special trigger message
m; which differs per epoch. If the adversary queries for a signature on message m; in epoch e,
then they receive some “secret information” from the signing oracle which can be used to recover
the signing key. If the message space is large enough and m; is chosen uniformly at random, this
modification would not make our scheme insecure, as an adversary would only have a negligible
chance of guessing m;. We therefore modify the signing oracle so that, in addition to handing out
signatures on messages m for epoch e, it time-lock puzzle encrypts m} with difficulty parameter A}
where At < At' < At + €. The difficulty parameter of the time-lock puzzle ensures that the puzzle
cannot be decrypted within the epoch that it is generated, but can be decrypted just after the
epoch concludes. Thus, if there is a clock synchronization issue where the challenger’s (the entity
generating the signatures) clock is slightly slower, then an adversary can decrypt to obtain m} and
query the signing oracle on m} to obtain the “secret information”. In our actual counter-example,
this secret information cannot directly be equal to the secret key because the ES scheme must be
perfectly deniable even to someone that holds the original signing key. To deal with this, we instead
encrypt the signing key with a one time pad that is 2 out of 2 additively secret shared. Querying
on different trigger messages reveals different shares of the key. Further details can be found in
Appendix H.1.

To argue that this scheme is a secure epochal signature scheme when the clocks are synchronized,
we note that in an epochal signature scheme, at the start of an epoch e + 1 two things happen:
(i) key evolution procedure is applied to the secret signing key to generate the signing key for
the next epoch; and (ii) public information pinfo, is broadcast. Here, pinfo, allows anyone to
produce signatures for epochs < e without the signing key such that they are indistinguishable
from signatures produced by the real signing key (akin to our definition of deniability). In the
above scheme, while secret key material is used to key the signing key, this is not revealed as a part
of pinfo, and does not need to be to create indistinguishable signatures (every field of the signature
will be simulatable). Thus, simply having pinfo, will not allow recovery of sk.

We now argue that the above scheme is not a secure time-deniable scheme. Briefly, this is due to
the pre-processing phase we allow during the unforeability definition. In this phase, the adversary
can query the same time stamp multiple times (here roughly the time-stamps correspond to an
epoch), and therefore can perform the attack described above by decrypting the time-lock puzzles,
making the relevant queries, and using the results to obtain the signing key. The key is then passed
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ES [25] Short-Lived Sigs [4] KeyForge B [38] Us

Forging Assumptions None RB Publish Keys None

Max number epochs Bounded Unbounded Unbounded Unbounded
Forgers all derive same key Yes Yes Yes No

Building Blocks OWF + TLP tVDF + RB* BDH BDH + TLP

Table 1: Comparison of as subset of existing constructions that provide a notion of deniability for
signatures. tVDF stands for a trapdoor VDF, while RB is a random beacon.

on to the “online adversary” who uses it to produce a forged signature.

We remark that, again, the above description is oversimplified and the full counter-example is
presented in H.1.

We briefly summarize some of the different properties of proposed constructions for expiring
signature schemes in Table 1.

4 Preliminaries

Throughout the paper we consider the depth depth(C') of a circuit C to be defined as the longest
path in the circuit from input wires to output wire. The size of a circuit size(C') corresponds to the
number of gates.

Sequential time. In this work sequential time refers to the non-parallelizable time it would take
any circuit to compute a particular function. More formally, a function has sequential time d or
takes d sequential steps if there exists a circuit C' which correctly computes that function and the
depth depth(C) = d. This notion attempts to capture inherent limitations in computing a function
that cannot be overcome by access to more cores or processors.

Time-lock Puzzles. The concept of a time lock puzzle or time lock encryption was first intro-
duced by Rivest, Shamir, and Wagner [35]. In this definition, a solution is provided as input to
an algorithm which produces puzzles as output. Security requires that it is hard to figure out
what solution was hidden inside the puzzle unless someone is willing to spend sequential time pro-
portionate to a function of ¢, if ¢ is a time parameter for our scheme. We use the circuit-based
adversarial definition which translates to bounding the parallel time of the adversary via bounding
the adversary’s depth.

Definition 4.1. A puzzle TimelLock is a tuple of algorithms Gen, Sol where the signature of the
algorithms is defined as below.

Gen(1*, A, s) = Z: On input a time/difficulty parameter A and a solution s € {0,1}*, output a
puzzle Z

Sol(A,Z) — s: This is a deterministic algorithm that when given a puzzle Z and the difficulty
parameter A produces a solution s.

Correctness. Correctness requires that for all solutions s € {0, 1}’\ and difficulty parameters A
the following holds:
Pr [Z « Gen(1*, A, s) : 5 < Sol(A, Z)] —1
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Efficiency. 3 a polynomial p s.t. VA, XA € N, Sol(A,-) runs in time A - p(})

Security. We consider a time lock puzzle to be a-gap secure if V functions T'(A) > a()) and

distinguishers A = {4} en of size size(A)) € poly(A) and depth depth(Ay) < %, 3 a negligible

function p s.t.YA € N, Vsg, s1 € {0, 1},

‘Pr [z « Gen(1*,T(N), 50) : A\(Z) = 1] —Pr [z « Gen(1*,T(N), 51) : A\(Z) = 1] ‘ <u(N) (2

This is a variation of the time lock puzzle definition of [16], where we define security to hold for
adversaries of polynomial size instead of super polynomial.

4.1 Hierarchical Identity Based Encryption

We recall the notion of Hierarchical Identity Based Encryption (HIBE). A HIBE scheme has the
following five algorithms:

Setup(1*) — (msk,pk): The setup algorithm generates the master secret key and public parame-
ters.

KeyGen(msk, I) — sk; Generates a key for the identity I using the master secret key msk.

Delegate(pk, sk, I') — sky); + Takes a secret key of some identity I and generates a secret key
for the identity I||I’.

Encrypt(pk,m,I) — ct The encryption algorithm takes the public key, a message and an identity
I and outputs the corresponding ciphertext.

Decrypt(skys, ct) — m/L: The decryption algorithm takes a secret key and a message and outputs
the message if the secret key hierarchy level allows decryption of the ciphertext.

Remark. Throughout this paper, we will make use of HIBE schemes where Delegate can take
in a child identity I’ that is the empty string. In such schemes, sk} < Delegate(pk, sky,nil) is a
re-randomization of the key sk; for identity I. We note that many HIBE schemes can be modified
to have this property (28, 27, 21].

4.1.1 Security and Correctness

We consider HIBE security similarly to the work of Lewko and Waters[28, 29] using the following
security game played by a challenger and an adversary.

— Setup The challenger runs (pk, msk) < Setup(1*) and gives the public parameters pk to the
adversary. Let set S be the set of private keys that the challenger creates. At the beginning,
S=0.

— Phase 1 In this phase, the adversary gets to make three types of queries.

1. Create queries QC(I), which are made on some specific identity I. The challenger adds
the keys for this identity to the set S. Note that the adversary does not get these keys.
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2. Delegate queries QD([I), which are made on some identity I such that the corresponding
keys are in the set §. The challenger adds the keys corresponding to the delegated
identity I’ and adds them to the set S.

3. Reveal queries QR (I), which are also made on some identity I such that the correspond-
ing keys are in the set S. In response, the challenger gives the corresponding keys to the
adversary and removes them from the set S.

— Challenge The adversary gives the challenger messages mg and m; and a challenge identity
I*. The challenger responds with a random S € {0,1} and encrypts mg under I* and sends
the ciphertext to the adversary.

— Phase 2 The adversary gets to query the challenger similar to Phase 1.

— Guess The adversary outputs its guess 3’ for 8 and wins if the following conditions are
satisfied:

1. g/ =p.

2. The challenge identity I* should satisfy the property that no revealed keys, in either
of the query phases, belong to an identity that was a parent of I* and the I*’s keys
shouldn’t have been revealed.

The advantage of the adversary A is defined as Adv4(1*) = Pr[g’ = ] — 3.

Definition 4.2 (Adaptive security for HIBE). A HIBE scheme is adaptively-secure if V poly size
adversaries A = {A)}ren their advantage Adv 4(1*) in the HIBE security game defined above is
negligible.

4.1.2 Key-indistinguishability

We additionally require that all polynomial-time adversaries have at most a negligible advantage
in distinguishing between keys generated via the KeyGen algorithm and keys generated via the
Delegate algorithm even when given access to the master secret key msk. We define this property
using the following HIBE key-indistinguishability game ExmeE.

The Setup phase is similar to the HIBE security game, except the adversary also gets the master
secret key msk. Similarly, the set S of keys queried and the corresponding query identifier is

set to be empty. A bit 8 & {0,1} is sampled uniformly.

Query phase. In this phase the adversary is allowed to adaptively query a key oracle QK(-) and
a challenge oracle Ocy (-, -, )

QK(-) takes as input an identity I, computes sk; < KeyGen(msk, I), selects an identifier id
and adds (id, I, sky) to the set S and responds with (id, skry).

Ocn(+,-,-) takes as input a challenge identifier id, and a pair of identities (I, I) such that
Iy is a parent identity of I;. Where parent identity implies that on the hierarchical
identity tree (Figure 1) where the root is msk, Ij is an intermediate node on the shortest
path from I; to the root. It checks for id in set S and checks that id corresponds
to a key query on Ip. If no such id is found, the output is 1. Otherwise, compute
sko < KeyGen(msk, I,), sky < Delegate(pk, sky,, I;) and respond with skg.
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Guess. The adversary outputs its guess 3’ for 8 and wins if 8/ = 3.

The advantage of the adversary A is defined as Adv 4(1*) = Pr[8’ = 8] — 3.

Definition 4.3 (Key-Indistinguishability for HIBE). A HIBE scheme is delegated key indistin-
guishable if V poly size adversaries A = {A)}ren their advantage Adv 4(1*) in the Exp|\5¢ game
is negligible.

The key indistinguishability property can be easily satisfied by many existing HIBE schemes,
provided the sub-key components from earlier levels of the HIBE can be re-randomized. Random-
ization techniques like these have been used to construct anonymous HIBEs in the past [37]. In
Appendix D we show that the prime order variant of the Lewko-Waters HIBE scheme [27] satisfies
this property.

5 Time-Deniable Signatures: Definition

A time-deniable signature scheme
DS = (KeyGen, Sign, Verify, AltSign) is a tuple of possibly probabilistic polynomial-time algorithms:

KeyGen(1*,T = T'(\)) — (vk, sk): On input the security parameter 1* and a difficulty parameter
for AltSign called T, this randomized algorithm outputs the verification key vk and the signing
key sk.

Sign(sk,m,t) — o: On input a message m and the signing key sk, this randomized algorithm
outputs a signature o on m for timestamp ¢.

Verify(vk,o,m,t) — {0,1}: On input a signature o, a message m, verification key vk and times-
tamp ¢, this deterministic algorithm outputs a bit.

AltSign (vk, (m*,t*,0*),m,t) — o: On input a valid message and signature pair (m*,o*) for
timestamp t*, this randomized algorithm outputs a signature ¢ on message m for timestamp
t.

Definition 5.1 (Efficiency). The algorithms KeyGen, Sign, Verify must run in time poly in the
size of the input. For AltSign it is required that there exist a positive polynomial ¢ such that
VT = T'(XA),VA € N, AltSign is computable in time g()\) - T" where T is the difficulty parameter
provided to KeyGen.

Definition 5.2 (Correctness). A time-deniable signature scheme for a message space M satisfies
the correctness property if it satisfies the following two conditions:

1. Vm € M, (vk, sk) + KeyGen(1*), o < Sign(sk,m,t), it holds that Verify(vk,o,m,t) = 1.

2. Let AltSign®(vk, (mq, to, 00), {(m;,t;)} k) be shorthand for the following recursively defined
function:

AltSign‘ (vk, (mo, to, 00), {(m;, tj)}jen) =
AltSign (vk, (m;—1, ti—1,AltSign'™" (vk, (mo, to, 90), { (M, ;) }jeli-1))s Mis i)
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where AltSign®(vk, (mq, to,00),{}) = 0o. In words, AltSign* is a signature obtained by ap-
plying AltSign k times to a provided signature oy on the message mg,ty. Then we have the
following additional correctness property:

Vk € N, for all sets of ordered tuples {(m;,;)};c[x], and Vmo,to that satisfy ¢;—1 > t; where
J € [k]:

(vk, sk) < KeyGen(1*,T);
Pr | oo + Sign(sk, mo,to); : Verify(vk, o,my, t) =1 =1 (3)
O — AltSignk(vk, (mo, to, 0'()), {(m]', tj)}je[k])

Remark. Property 2 assumes that signatures and “forged” signatures used as input to the AltSign
algorithm are computed honestly. One can also consider a stronger notion of correctness, where
correctness of AltSign holds even on input signatures (and “forged” signatures) that may not be
honestly computed, but nevertheless can be validated by the Verify algorithm. We refer to this as
robust correctness.

In this work, we focus on the simpler notion and leave the discovery of schemes that satisfy
robust correctness to future work.

Definition 5.3 (Robust Correctness). A time-deniable signature scheme satisfies robust correctness
if:

Y(vk, sk) < KeyGen(1*,T'), ¥(my, to, o¢) such that

Verify(vk, oo, mo,t0) = 1, Yk € N, for all sets of ordered tuples {(m;,t;)};c) where Vj € [k],
tj—1 2> tj:

Pr [ o « AltSign* (vk, (mo, to, a0), {(mj, t;)}jew) : Verify(vk,o,my,ty) =1] =1 (4)

5.1 Security Property: (¢, 7)-Unforgeability

Our unforgeability notion requires that signatures should remain unforgeable within a restricted
time window. We capture this via a security game below:

Setup. The challenger generates (vk,sk) < KeyGen(1*,T) and gives the verification key vk to
the adversary.

Phase 1. The adversary is a tuple of two algorithms, Ag and A;. In this phase, Ag is allowed
to adaptively query a signing oracle Os;g, which is defined as follows. On input a message m
and a timestamp ¢, the signing oracle Og;gn(sk, -, -) returns the signature o < Sign(sk, m,t).

Transfer. The adversary A, gives an advice string z to adversary A;.

Phase 2. The adversary A; has to respond to the challenger with a forgery while also being
allowed to adaptively query the oracle Osg;gn.

Forgery. The adversary A = (A, A1) wins if in the end \A; can produce a valid forgery (m*,t*, o*)
under the following constraints:

1. Vi, t* > t; for queries (m;,t;) made by Ay
2. Vi, (m;,t;) # (m*,t*) where (m;,t;) are queries made to Osjgn by A;
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An adversary A = (Ap,.A;) is considered an e-admissible adversary if it satisfies the above
conditions and 37'(A) where VA € N, e(A) < T'(\), depth(A;) < 75_1((,%)2’ and size(A) € poly(]A).
Note that the depth of Ay is allowed to be polynomial in the security parameter whereas the

depth of A; is more strictly bounded.

Definition 5.4 ((e,T")-Unforgeability). A time-deniable signature scheme satisfies the e-Unforgeability
property if V e-admissible polysize adversaries A = {A)}ren = {(Ax0,Ax1)}ren, VT'(A) satisfying
the e-admissability requirement for A, there exist a negligible function u(-) such that for all A € N:

(vk, sk) « KeyGen(1*, T'(\)),
Pr | (z) « Ay o950k (yk), : Verify(vk, m*,t*,0*) = 1| < u(N) (5)
(m*,t*,0%) 4 Ay Osien(#F) (2)

Remark. The prior definition is more akin to EUF-CMA unforgeability than strong unforge-
ability since we disallow adversaries from submitting forgeries on message time-stamp pairs they
have received in the past. We leave the question of achieving strong unforgeability to future work.

5.2 Deniability

Deniability in our scheme comes from the fact that after 7" sequential time-steps, anyone can forge
a valid signature under the verification key of the original signer. Consequently, a time-deniable
signature scheme should ensure the indistinguishability of signatures generated via the Sign and
the AltSign algorithms. Otherwise the original signer could not deny that it signed a message at
a particular time. We present below a security game to capture this idea. Our notion would be
meaningful even if the adversary did not have access to the signing key, but we give them it as well

in order to capture more powerful attacker models.

We now define the security game Exp{)L:

Setup. The challenger generates (vk, sk) «— KeyGen(1*,T') and gives both the verification key vk
and the signing key sk to the adversary A. They also initialize an empty table 7 and sample

8 <& 40,1},

Query Phase. In this phase, the adversary is allowed to adaptively query a signing oracle
Osign(sk, -, -) and a challenge oracle Ocn(-, -, -).

Osign(sk, -, -) takes as input a message m and a timestamp ¢ to produce o < Sign(sk,m,t).
It randomly chooses a new identifier id (not equal to any previously defined identifiers),
records (id, m,t,o) in T, and returns (id, o)

Ocn(+,-,-) takes as input a tuple of identifier, challenge message, and time-stamp (id, m, t).
It checks 7 for id. If it is not present the output is L. Let m/,t',0’ be the values
associated with id. If ¢ > ¢’ the output is also L. Compute ¢° « Sign(sk,m,t) and
ol « AltSign(vk, (m’,t',0’), m,t). Finally it responds with o.

Guess. The adversary outputs its guess 3’ for 3. The advantage of the adversary A is defined as
Adv4(1*) =Pr[f = 8] — % The adversary A wins if 5’ = .

Definition 5.5 (Deniability). A signature scheme is considered to possess the deniability property

if V poly size adversaries A = {A)}ren their advantage Adv 4(1*) in the Exp{)Y game is negligible.
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k-hop Deniability: We refer to the definition defined above as 1-hop deniability. It is reasonable
to ask if indistinguishability still holds when comparing the output of Sign with applying the AltSign
algorithm k times instead of just once. Intuitively, this notion could be stronger and offer more
deniability via a larger pool of indistingishable forgeries.

A formal definition of the k-hop indistinguishability game Exp'[()hs°p is given below:

Setup. This is the same as the (1-hop) key-indistinguishability game ExpB\'SD.

Query Phase. The adversary A has access to two oracles Os;jgn(sk, -, ) and O¢y(-,-,-,+). Osign is

the same oracle as given in Expg"SD.

Ocn(+,-,+, ) takes as input a challenge identifier id, one ordered set of messages and time-
stamp tuples {(m;,t;)}ick—1), and a message, time-stamp pair m*,¢*. It checks that
there exists a row in 7 with (id, -,-,-). Let mg, to, 00 be the values associated with that
row. It ensures that Vi € [k — 1],¢i—1 > t;, and t_, > t*. If any of these does not hold,
the output is L. Compute:

0" « Sign(sk,m*,t*)
o' « AltSignF (vk, (mo,to, 00), {(m1,t1), ... (Mg_1, tx_1), (m*,t*)})

o is returned as the output.

Guess. This is again the same as the ExpB“SD game.

Definition 5.6 (k-hop Deniability). A signature scheme achieves k-hop deniability property if V

poly size adversaries A = {A)} en their advantage in the Exp:()h;p game is negligible.

Theorem 5.1. Any time-deniable signature scheme satisfying the deniability property as defined
in definition 5.5, also satisfies the k-hop deniability property as defined in definition 5.6.

For a proof of Theorem 5.1 see Appendix C.1.

6 Delegatable Functional Signatures

In this section we define and construct delegatable functional signatures and define an additional
key indistinguishability property for this primitive.

Functional Signatures. We start by recalling the notion of Functional Signatures as defined by
Boyle, Goldwasser, and Ivan[11].

Definition 6.1. A functional signature scheme FS = (Setup, KeyGen, Sign, Verify) is a tuple of
potentially probabilistic, polynomial time algorithms of the following form:

Setup(l’\) — muk,msk: On input the security parameter, this algorithm returns the master
verification key mvk and the master signing key msk.

KeyGen(msk, f) — sky: On input the master signing key msk and a function f, this algorithm
outputs a function-specific signing key sk;.

17



Sign(sky, f,m) = (f(m),o): On input a function-specific signing key, a function f and a message
m, this algorithm outputs f(m) and a signature o.

Verify(muvk, f(m),o) — {0,1}: On input a master verification key muvk, a function f() evaluated
on message m and a signature, it outputs a bit.

Correctness. Correctness requires that any signature output from the Sign algorithm on a valid
functional key and a message verifies correctly.More formally, for all supported functions f, for all
messages m,

muk, msk < Setup(1*);
Pr | sk; « KeyGen(msk, f); : Verify(mvk,m*,0)=1| =1
m*, o < Sign(sky, f,m)
Security. For completeness, the unforgeability security game Exp}:’é‘": between a challenger and
adversary A for functional signatures is provided below.

Setup. The challenger generates (mvk, msk) « Setup(1*). They also initialize an empty table
T. muvk is given to adversary A.

Query Phase. In this phase A gets access to a key oracle OKey and a signing oracle OSign.

1. Okey(msk,,-) takes as input function description f and an identifier i. The challenger
checks if there is a row in 7 corresponding to (i, f,-). If such a row exists then return
the corresponding secret key skif. Otherwise generate sk; < KeyGen(msk, f), record
(i, f,sks) in T and return sky.

2. OSign(msk, -,+,+) takes as input a function description f, an identifier 7, and a message
m. If a row in T corresponds to (i, f,-) then use the secret key sk specified in that row.
Otherwise, generate sky < KeyGen(msk, f) and record (i, f,sks) in 7. Let f(m),o be
the output of Sign(sky, f,m). Return o to A.

Challenge Phase. The adversary 4 must return m*,o* to the challenger. An adversary is
considered to be admissable if that the following conditions are satisfied:

1. V values (m;, o;) returned by OSign, m; #m*

2. there is no key sky queried from OKey such that 3m where f(m) = m*

A functional signature scheme is said to be secure if for all admissable poly-size adversaries
A = {A)},en there exists a negligible function p(\) such that

muvk, msk «— KeyGen(1*); ) -
Pr m* ot A?K‘y(mSk’"')’CS“"(mSk""")(mvk) : Verify(mvk, m*,0*) = 1| < p())
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6.1 Key Delegation

In order to create signing keys even without the master signing key, we define an additional prob-
abilistic polynomial time algorithm called Delegate. This algorithm takes as input a function f, a
corresponding secret key sky, and a restriction of f, f’. The output is a secret key sk fror L. Wesay
that a function f’ is a restriction of another function f if the following is true: let f: X — YU{L},
then f’ has the same domain and codomain as f and Vz € X either f'(z) = f(z) or f'(z) = L.
This captures the ability to create a signing key that can sign some subset of the same messages
as the original key. Notice that restriction here is almost a misnomer since technically f can be a
restriction of itself.

FS.Delegate(muk, f, sk, f') — sky, L: given the verification key mwk, a function f, a signing key
skg, and another function f’ output sk if f’ is a restriction of f else L.

For a delegatable functional signature scheme the following additional correctness property must
hold for all functions f : X — Y U {L} supported by FS, for all restrictions f’ of f, and Vm € X
where f'(m) # L:

(mvk, msk) + FS.Setup(1*);

sky < FS.KeyGen(msk, f);

sk < FS.Delegate(muk, f, sky, f');
o « FS.Sign(sky, f',m)

Pr : FS.Verify(muvk, f'(m),0) — 1| — 1 (6)

The relevance of the delegation property will be demonstrated in our construction. Furthermore,
our construction will require yet another property of these delegatable functional signatures.

Key Indistinguishability We would like it to be the case that keys generated via KeyGen and
Delegate appear the same to any adversary, even if they have access to the master signing key msk
and can make adaptive queries. To capture this notion we define the key-indistinguishability game

Exppe° for delegatable functional signatures.

Setup The challenger runs (muvk, msk) < Setup(1*) and gives both the master verification key
muk and the master signing key msk to the adversary. Let 7 be a table kept by the challenger,

initialized to be empty. The challenger also samples 3 & {0,1} and keeps this value to itself.

Query Phase In this phase, the adversary gets to query two different oracles.

1. Key creation oracle Okey(-), which can be queried on some specific function f. On input
a function f, the key creation oracle checks 7 for keys on function f. Let 7 be the largest
value associated with a row containing f. Run sk; < FS.KeyGen(msk, f) and record
(41, f,sky) in T. Output (i + 1, sky).

2. Challenge oracle Ocy(-,-,-) where the first input is an identifier 7 and the subsequent
inputs are functions fy ,f1 and f; is a restriction of fo. The challenger checks 7 for a
row (i, fo,-) that has secret key skj,. If no such key exists, the output is L. Otherwise,
the oracle computes sko = FS.Delegate(muvk, fo, sky,, f1), sk1 = FS.KeyGen(msk, f;) and
returns skg.
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Guess The adversary outputs its guess 3’ for 8 and wins if 8 = S.
The advantage of the adversary A is defined as Adv4(1*) |Pr[[8' = 8] — 3]|.

Definition 6.2 (Key-Indistinguishability for Delegatable FS). A delegatable functional signatures
scheme is considered key-indistinguishable if V poly size adversaries A = {A)},en their advantage
Adv 4(1%) in the Exp'Fr‘éD game is negligible.

6.2 Construction for Prefix Functions

We now describe how to create delegatable functional signatures for prefixing functions from hier-
archical identity-based encryption. We will be concerned with signatures on functions of the form
fr: {0,1}¢ x {0,1}™ — {0,1}**™ that concatenate their arguments. More formally, we consider

functions
tllm t<T

fr(t,m) = { 1L otherwise (7)

For the sake of readability, in the following constructions we abuse notation and write 7" in place
of fr i.e. FS.Delegate(muvk, fy,sky, , f,/) is replaced with FS.Delegate(muvk, y, sky,y’).

We also define the notion of stack trace which will be useful in the formal description of the
protocol.

Definition 6.3. The stack trace of T', Trace(r, T) is defined as the set of nodes on the stack when
executing a depth-first search to find the leaf node 7"+ 1 in a binary tree with some root r.

The stack trace can be found efficiently, and as described in the technical overview gives us the
set of the < £ identity key nodes required to derive all keys corresponding to timestamps up to 7'.
The construction is presented in pseudocode in Figure 2.

Theorem 6.1. If HIBE is adaptively secure then the functional signature scheme for prefiz functions
constructed in Figure 2 is unforgeable.

For a proof of Theorem 6.1 see Appendix B.

Theorem 6.2. If HIBE is key-indistinguishable then the scheme in Figure 2 satisfies the functional
signatures key-indistinguishability property.

For a proof of Theorem 6.2 see Appendix B.2.

7 Construction of Time-Deniable Signatures

This section describes our construction of time-deniable signatures from key indistinguishable,
delegatable functional signatures for prefix functions and time lock encryption. To sign a message
at time stamp ¢, we first use the master signing key to construct a signing key for the function
ft- This key is then used to sign the message and is included as a ciphertext, time-lock encrypted
with the signature. The alternate signing algorithm decrypts the ciphertext, uses the delegate
algorithm to produce an appropriate signing key for fy with ¢ < ¢, and then signs and time-
lock encrypts the key. For security of the scheme to hold, the parameter for the time-lock puzzle
A cannot be precisely the same as 7. The intuitive reason behind the difference is that forging
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Setup(1*) : Delegate(mvk = pk, T, skt = (pk’, listsk,.), T") :
(msk', pk) + HIBE.Setup(1*) if T >T:
return pk, (pk, msk’) return L
T]...T; < parse(T")

KeyGen(msk = (pk, msk’),T) : sk, j < findPrefix(listsx,., T")
listgg, := |] listok,, = ||
trace + Trace(msk,T) fori€0,...,j—1:
for node € trace : sk; < HIBE.Delegate(pk, list sx.,.[2], nil)

sknode < HIBE.KeyGen(msk', node) add (listsk,, sk:)

add(list sk, , Sknode) trace < Trace(T7 ... Tj,T)
return pk, list ., for node € trace :

sknode < HIBE.Delegate(pk, sk, node)

Sign(skr, T, (t,m)) add (listk,., , Sknode)
ift >T: return pk, list .,

return L
t1...te < parse(t) Verify(mvk = pk,m*, 0 = skyjjm) :
pk, listsy,. < parse(skr) "
sky, j < findPrefix(list s, t) msg « {0,1}
skym ¢ HIBE.Delegate(pk, sky, ;41 ...to||m) € ¢ HIBE.Encrypt(pk, msg, skyjm)
return ¢(|m, sky{m return HIBE.Decrypt(sky||,,,c) = msg and t||m =

m*

Figure 2: The function fr for each input message m is defined as fr(t,m) = parse(t)|m if t < T
or L .findPrefix(list,id) takes in a list of HIBE secret keys called list and an identity string id. It
returns a secret key sk and an index j so that sk is a secret key for a length j prefix of id. Any
bit string beginning with ¢;,; where j = £ is the empty string. The function Trace(root,leaf) is
specified in definition 6.3.

involves not just breaking the time lock but also executing other algorithms. Let |A.B| denote
the depth of the circuit that computes algorithm B of cryptographic primitive A and z(\) =
|FS.Verify| + 2 + 1 + |FS.Sign| + |FS.KeyGen| + |TimeLock.Gen|. Our construction is described in
Figure 3 and uses z(\) to define A.

Theorem 7.1. Consider the scheme presented in figure 3. Let A = {(Ax0,Ax1)}ren be a polysize
adversary in the (e, T)-unforgeability game, q(\) the mazx number of queries Ay, can make, m the
number of queries Ay actually makes, B an adversary against the e-gap time lock puzzle scheme,
and C an adversary against the adaptive unforgeability of the functional signature scheme. Then
the following holds:

Adve Y (V) < (g(N) + 1) - (m - Advy Tmeteck(y) + AdvES(V))
For a proof of Theorem 7.1 see Appendix A.

Theorem 7.2. If the underlying delegatable functional signature scheme is key-indistinguishable
then the constructed time-deniable signatures scheme satisfies the deniability property.

For a proof of Theorem 7.2 see Appendix A.
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KeyGen(1*,T) : AltSign(vk, (m*,t*,0*), m,t) : Verify(vk, o, m,t) :

(mvk, msk) < FS.Setup(1*) mvk, T, A = parse(vk) ¢, s = parse(o)

return ((mvk, T, \), (msk,T,))) c*,s* = parse(c*) return FS.Verify(vk, t||m, s)
sk~ = TimeLock.Sol(c*)

Sign(sk = (msk,T,\), m,t) : sky —

sk, < FS.KeyGen(msk, f,) FS.Delegate(muk, f;, sk, fi)

v, s « FS.Sign(ske, fi, (t,m)) v, s « FS.Sign(sky, fi, (t,m))

¢ + TimeLock.Gen(1*, ¢ « TimeLock.Gen(1*,T-2()), sk;)

T - z()), ske) return (¢, s)

return (¢, s)

Figure 3: A construction for a time-deniable signature scheme DS from a key-indistinguishable,
delegatable, functional signature scheme FS and a time lock puzzle TimeLock. The function f; for
each input message m and time ¢ is defined as f;(t, m) = parse(t)||m if t < t, else L. The polynomial
z(A) is a multiplicative factor for the difficulty parameter of the time lock puzzle and is described
in the text.

8 Implementation and Evaluation

Implementation. To demonstrate the potential efficiency of our scheme, we implemented a variant
of it in python. For our time lock puzzle, we modified an an existing, open-source implementation
of an RSW time-lock puzzle [26]. Our timestamp is capable of supporting 2'¢ different values. This
is approximately equivalent to [38] where granularity of the timestamp is 15 minutes and covers a
period of 2 years. This is reasonable given at least some motivating applications (i.e. email), where
it is assumed that frequent key rotation is being done for domains and coarse granularity may be
acceptable.

Construction of FS To instantiate our functional signature scheme, we need a HIBE scheme
that is both key-indistinguishable and adaptively secure. The Lewko-Waters scheme mentioned in
Section 4.1.2 does satisfy these properties. However, it is not efficient enough for our application.
Instead, we implement a version of the more efficient Gentry-Silverberg (GS) [21] scheme using
Charm [1]. Modifications are needed since natively GS does not satisfy the key-indistinguishability
requirement: when a key is delegated, some of the ); values in the secret key are sub-keys given
to the user by their parent making distinguishing easy. To fix this, we re-randomize these values
by having the parent derive new exponents v; which are used to update all relevant @; values to
v;Py + Q;. We also update S; with v;_1P; to ensure correctness. These modifications give key-
indistinguishability to GS for little overhead. Unfortunately, the Gentry-Silverberg HIBE is only
adaptive-secure with exponential loss in the tree depth. While it is true that our depth is constant,
the loss is still too great to allow instantiating with reasonable security guarantees. For example,
assuming that our tree depth is ¢ = 5 with adversaries making billions of key queries, we need
> 156 + k bits of security for the BDH problem to instantiate with any security level k. With our
own security loss accounted for, the scheme would only be able to achieve at most a 68 bit level
of security assuming a pairing-friendly curve with 256 bit security. Due to a library limitation, we
instantiate with curve BN-254 (a curve having ~ 100 bits of security), with the understanding that
the numbers reported below are merely for approximating benchmarks.
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Setting Parameters. Recall that in our construction we make use of a time lock puzzle. There are
two main concerns that come with implementing schemes that use time-based crypto assumptions:
one is precisely capturing the speed-up (if any) offered by parallelism, the other is accurately
estimating the fastest real-world time to do the computational task the assumption is based on.

On the first point, to the best of our knowledge, there are no known improvements from paral-
lelism against the RSW assumption. There are certainly papers that imply solving many instances
at once can be done faster than just sequentially solving each instance [32], but it is hard to see
how this is helpful in decreasing the time to solve a single instance faster. Therefore, as in prior
work, we assume no speed up from parallelism.

For the second, state-of-the-art techniques mostly use an ad-hoc approach, where special hard-
ware or an optimized ASIC implementation is created specifically to determine the best possible
times. Of course, this prior approach does not account for the continuous increase in computation
power over multiple years or decades and therefore is unreliable for large time windows. A more
accurate method would estimate the change in computing power over the time window needed upon
instantiation and adjust the time lock puzzle parameter accordingly. Unfortunately, this requires
an accurate estimate of the increase in computational power over time which has been historically
hard to provide [14]. Therefore, it is advisable to use time-based crypto schemes where the timing
parameter At is small, perhaps a year or two at most. As we do not have access to an optimized
implementation of repeated squaring, we simply benchmark the cost of computing squares modulo
a 2048 bit composite on our machine. For us this corresponded to roughly 5,883,206 squares per
second.

Experimental Evaluation. Experiments were done on a Intel Xeon E5 with 500GB of memory,
running Ubuntu. As previously stated, the implementation itself was done in python and does not
use either multi-threading or multiprocessing. Estimates were obtained by running each algorithm
500 times and taking the median. The timestamp value is chosen uniformly at random, as signing
time differs significantly depending on the value of ¢t.

We begin analysis by first examining the effect of varying the arity of the tree. This is the
number of children per parent node and we denote it throughout this section by N. This is an
important parameter for our scheme because the time lock puzzle sent along with the original
signature has size that implicitly depends on it. Figure 4 shows the differences in signing time
when varying this parameter from 2 to 19. A similar figure in appendix E shows how the signature
size varies for the same values. We note that overall signing becomes more efficient as the depth of
the tree decreases.

Our microbenchmarks are presented in table 2. While our scheme does incur a slightly large
computation cost in some respects to other existing schemes, for our proposed application of DKIM
this demand is not unreasonable: email is largely for non-instantaneous transactions and all of our
algorithms run in only hundred of milliseconds which should not noticeably effect user experience.

Finally, we note that performance can be expected to improve substantially with proper utiliza-
tion of parallelism. The signing algorithm requires creating a functional key where each sub-key can
be extracted simultaneously. Using back of the envelope calculations, for our 16-ary tree, assuming
that the cost of signing is equivalent to KeyForge, computing the time lock encryption takes 50
ms (as it does in our implementation), and we have access to > 5 processors, we could achieve a
median of 65.94 ms for signing for our current scheme. Thus, we expect microbenchmarks on opti-
mized implementations to be competitive with existing schemes even if slightly slower on account
of working in groups of a larger size for a reasonable security level.
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Figure 4: The signing time for a time-deniable signature scheme using the Gentry-Silverberg HIBE
with BN-254 and varying values of N

KeyGen (ms) | Sign (ms) | Signature Size (B) | Verify (ms)
109 223 7162 178

Table 2: Relevant operations when instantiating the scheme of Figure 3 using a Gentry-Silverberg
HIBE with BN-254 and N = 16. All benchmarks were calculated taking the median over 500
attempts while choosing a fresh timestamp value.

9 On the Necessity of Time-Lock Puzzles

Our construction of time-deniable signatures makes uses of time-lock puzzles to achieve short-
term unforgeability. We show that the use of such a primitive is to an extent inherent. Namely,
assuming extractable witness encryption [19, 22], we show that time-deniable signatures imply
time-lock puzzles.

We demonstrate this implication in Appendix F. We remark that while extractable witness
encryption is a strong tool, it alone is not known to imply time-lock puzzles.”

10 Conclusion

In this work we introduced a new notion of deniable signatures that provides strong unforgeability
and deniability guarantees without requiring the signer to periodically publish secret key material.
We show how to realize our primitive using time lock puzzles and a HIBE scheme that satisfies
a special key-indistinguishablity property. Important directions for future work include construct-
ing time-deniable signatures from a different set of assumptions (non-HIBE based) and building
constructions that satisfy robust correctness. Improvements to the real-world efficiency of HIBE
schemes, be it through better implementations or new constructions, will greatly influence the ef-
ficiency of our time-deniable signatures construction and allow our scheme to be more competitive
with existing proposals.

"When supplemented with a computational reference clock, it is known to imply time lock puzzles [30].
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A Proofs for Time Deniable Signatures

Theorem A.l. The time-deniable signature scheme presented in figure 3 is unforgeable.

In the discussion that follows, let the output of a hybrid game H be the output of the challenger.
We prove the theorem statement using a hybrid argument where H, represents the original (e, T')-
unforgeability game. Where details are omitted in the hybrid description of H;, it is assumed they
are the same as in H;_1.

Hy = Let g(A) = size(A)1). Challenger samples r & [g(A)] U {0}. If the number of queries
made to Osign by A1 is not r, output L.

Claim 1. Adv/{'(A) = ;jpAdv/{°())

Note that the win condition is checked whenever the challenger “correctly guesses” how many
queries will be made by the adversary in the second phase. Let m be the number of queries made
by A 1, where 0 < m < ¢()A). This must hold since the adversary cannot make more queries than
its size dictates. Therefore,

Adv*i () = Pr(r = mlr & {0,...,q(A\)})Adv’o(N)

It should be clear the first quantity is PTOVES] ,\ = and the claim is thus true.

Consider the following sequence of hy rids where 2 <i<m+1
H; = On the (i—1)"" query to Osign by Ay 1, challenger replaces ¢ = TimeLock.Gen(T’, sk;) with
TimeLock.Gen(T',0) .

Claim 2. 3B, a e— TimeLock adversary, such that |Adv’*(A) — Adv’i "' (A)] < Advi TmeLock(y)

WLOG, assume Adv',* > Advﬁ“‘. First consider the following distinguisher D between H;_
and H;, where output of D being 0 denotes H;—1 and 1 denotes H,;.
Description of D on input b from #H;—1 or H;:

e Ifb=1output b =1
e If b= 0, output ¥’ = 0.

Notice that D’s advantage in distinguishing is dependent on Advj*(}) Ade’ '(A\) and that
the depth of D is 2. We will now use D and A) to construct an adversary B’.
Description of € — TimeLock adversary B':

e Honestly run the FS.Setup algorithm and answer all queries from A) o honestly
e For the j** query from A, ;:

—if j <i 1, ¢ « TimeLock.Gen(1*,T,0)

— if j > i—1, ¢ « TimeLock.Gen(1*, T, sky,)

—if j =i — 1, compute sk;, , < FS.KeyGen(msk, f;, ,), send the challenger (skq, ,,0),

and receive z. Set ¢ = z.

i—1

e From A, get output b and give b to D. Get b’ from D. Output b’ to the challenger.
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Define (B;,B3) = B’ where B, represents B’ up until query i — 1 is made and B, is all that
follows. Let the output of B; be z and hard-code it into By to get B.

Analysis of adversary B:

Let |A.B| denote the depth bound on the algorithm B for primitive A. The depth bound for B
is represented below

depth(B) < depth(A;) +m - (|FS.KeyGen| + |TimeLock.Gen| + |FS.Sign|) + |FS.Verify| + 2

< % +m- (|FS.KeyGen| + |TimeLock.Gen| + |FS.Sign|) + |FS.Verify| + 2
(M) (|FS.Verify| + 2) N t(\)[1 + |FS.KeyGen| + | TimeLock.Gen| + |FS.Sign|]
= e() e(A)
t(\)z(\)
(M)

Assuming the e-gap security of the TimeLock and because A = t/(\) = t(A)-z(A) in our construction,
B is appropriately bounded.

Pr(B succeeds) = %Pr(B succeeds | = 0) + %Pr(B succeeds | f = 1)

= % Pr(D outputs 0 when given H;_1) + % Pr(D outputs 1 when given H,;)
= Pr(D correctly distinguishes H;—1 and H;)

B’s probability of success entirely depends on D’s and thus B’s advantage is the same as D’s. The
claim thus follows.

Claim 3. 3C, an adversary against the unforgeability of the FS scheme, s.t. Advj{"‘“()\) <
AdvEP())

We now argue that the advantage of any adversary in H,,+1 can be translated into equivalent
advantage against the unforgeability scheme.
Description of C:

e Receive mvk from the FS challenger.
e On queries m,t to Osign(-)

— if phase one, query Okey(fi,i) and receive skj, where i € N is next available counter.
Compute o « FS.Sign(sky,, fi, (t,m)), ¢ + TimeLock.Gen(1*, T, sky,). Return (c,o) to
Ao

— if phase two, query OSign( ft,%, (t,m)) with 7 € N being the next highest counter to get
m*,o. Compute ¢ « TimeLock.Gen(1*,7’,0) and return (¢, o) to Ay

e If A, returns forgery m,t,o = (c, s) return (t||m, s) to the FS challenger.

Analysis. We now show that if A is successful, then C must be as well. Say A returns a
forgery m*,t*,0* = (¢, s). In order for A to be admissable, it must be true that A never received a
signature with ¢ > t* during the first phase and during the second phase there was never a query
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for (m*,t*) specifically. The first point implies C never queries for a secret key for a function f;
where ¢t > t* so s is a valid signature to give back to the functional challenger. The second point
means that A is not giving C a signature that C asked for from the FS challenger with some mauled
¢ where ¢ is an incorrectly structured puzzle or does not hide the right secret key. Therefore if A
returns a valid forgery, then C returns a valid forgery and the claim follows.

Theorem A.2. If the underlying delegatable functional signature scheme is key-indistinguishable
then the constructed time-deniable signatures scheme satisfies the deniability property.

We prove this by showing how to use an adversary A who wins the time-deniable signatures

ExpB"sD game to construct an adversary B which wins the delegatable functional signatures key-

T . . IND
indistinguishability game Expgg”.
e B receives the master verification key and master signing key (muvk, msk) from its challenger
and forwards it as is to A.

e In the query phase, whenever A makes an Osign(sk, -, -) query on message m and timestamp
t, B performs the following operations:

— Query the FS key oracle Okey(msk,-,-) on t to get back (id, sk;). Add the response to
its internal table of responses. Otherwise, return L.

— Use the received key to create v, ogs < FS.Sign(f;, sk, t,m) and ¢ < TimeLock.Gen(A, sky).

— Let ops = (¢, 0Fs). Send (id, ops) to A. This simulates the functionality of Og;g, (sk,t,m)
which outputs an identifier and o « DS.Sign(sk, m,t).

e In the query phase, whenever A makes a query to the DS challenge oracle O¢y(+, -, ) on some
tuple (id’,m’,#'), B performs the following operations:

— Query the FS challenge oracle on (id’,t,t’) if id’ corresponds to a query on time ¢ in its
table and ' < t.

— Using the received key sky, compute v, opg < FS.Sign(fy, sky,t,m) and ¢ +— TimeLock.Gen(A, sky/).
— Send oy = (¢, 0g) to A. This simulates the DS.Sign() algorithm when the challenger’s

sampled bit 3 is 0 as the key used for FS.Sign() is a freshly generated key. When g = 1,
the key used for FS.Sign() is a delegated key, which simulates the DS.AltSign() algorithm.

e At the end, A outputs its guess ' for 8, B forwards this without change to its challenger.
The advantage of B in winning the Epr:'\éD game is same as the advantage of A in winning

the ExpB"SD game as all the responses to A’s queries are simulated correctly by B.

B Proofs for Delegatable Functional Signatures

Theorem B.1. If HIBE is adaptively secure then the functional signature scheme for prefix func-
tions constructed in Figure 2 is unforgeable.

We prove this by showing how to use an adversary A who succeeds with non-negligible advantage
in Exp,l:Jé"F to construct an adversary B which succeeds with non-negligible advantage in the HIBE
unforgeability game.

Description of B
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e In the setup phase, initialize empty table 7 and receive pk from HIBE challenger and forward
it to A.

e When A queries (f;, 1) to OKey check if row with 7 in 7.

— If it exists, return the list of keys sk; to A.

— Otherwise, use the algorithm FS.KeyGen algorithm in Figure 2 replacing HIBE.KeyGen(msk, node;q)
with QC(id) and QR(id). Let listy, be the resulting list of keys. Record (,t, listg,) in
T. Send pk, listsx to A.

e When A queries (ft,i,m) to Osign first parse m as £||m. If £ > ¢ output L. Check if there is
row in 7 with identifier ¢

— If there is, let listy,, be the list of keys associated with that row. Let sky be the
key in listy, associated with an identity that is the prefix of £. Compute skgjm <
HIBE.Delegate(pk, sk, suffix(#/, £||m) where suffix omits the prefix ¢ from #||m. Return
ski||m

— Otherwise, use the algorithm FS.KeyGen in Figure 2 replacing HIBE.KeyGen(msk, node;q)
with OC(id). Finally query OD(t||m) and do a subsequent reveal query QR (t||m) to get
ski|m- Return skg,, to A.

e When A outputs its forgery (m*,o*) parses m* as t||m and o* as sk*.

— Sample a message msg and check that Decrypt(sk*, HIBE.Encrypt(pk, t|m, msg)) = msg.
If this does not hold or if 3 a row (i/,#,listy, ) in T where t < ' output ' & {0,1}

— Otherwise randomly sample messages mo and m,. Let I* = t|/m. Send to challenger
(mg, m1,I*) and receive ct. Compute m’ <— HIBE.Decrypt(skj-,ct). If m = my, output

0. If m = my, output 1. If the response is neither, output 3’ & {0,1}.

Analysis

In order to be an admissable adversary, A must return a signature ¢* and an m”* that verify
where they do not hold a functional key that has m* in its range. The keys that have m* in their
range are of the form fp where 7' > t. In other words, these functional keys are those that contain
some HIBE secret keys that are prefixes of the identity ¢ and no other functional key has such prefix
HIBE keys by the design of the construction. Therefore if A is admissible, m* = t||m will be a valid
identity to challenge on.

If A is successful, then o* passed verification meaning for a random message it acted as a secret
key for the identity ¢|/m. This implies with high confidence that it is in fact the secret key for this
identity. Decrypting with the secret key for identity ¢||m the ciphertext ct will be successful with
overwhelming probability and therefore most of the time when A succeeds B succeeds as well.

In any other circumstance, when A is either not admissible or does not return a valid forgery,
B catches this and responds with a uniform bit. Thus the theorem statement follows.

Theorem B.2. If HIBE is key-indistinguishable then the scheme in Figure 2 satisfies the functional
signatures key-indistinguishability property.

We prove this by showing how to use an adversary A who wins the delegatable functional
signatures key-indistinguishability game Expl:r‘éD to construct an adversary B which wins the HIBE

key-indistinguishability game Expng.
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e B receives the keys (pk,msk) from its challenger and forwards it as is to A.

e After this, in the query phase, when A makes a OKey(-) query for time ¢, adversary B computes
trace < Trace(root,t) where root is the position of msk in the HIBE hierarchy tree. This gives
B the list of nodes on which it queries the key oracle QK (-). Each of the QK (-) query response
has an identifier id along with the key for a node skno4e. B maintains a table with entries of
the form (t,id’, {(id, sknode) }nodectrace) Where id’ represents the counter value corresponding
to this particular query from A. B sends (id’, sk = {sknode }nodectrace) to A. This is the
response A expects as B simulates the FS.KeyGen(msk,t) algorithm with its queries to the
HIBE key oracle.

e When A makes a FS challenge oracle O¢y(+, -, +) query with a tuple of the form (i,%g,¢;), B
performs the following operations:

— Check that to > ¢; and there is a row starting with (7,%p) in its table, otherwise return
L. This guarantees that on the shortest paths from the leaf node t; to the root in the
HIBE hierarchy tree (Figure 1), there exists an element j such that its corresponding
HIBE key is present in the set sk, representing the FS key for ¢y.

— Compute sk, j < findPrefix(sk:,t1) and trace’ « Trace(tj ,t1) which is the trace of leaf
node t; in a tree where the root is # , the first j bits of 3. Rerandomize the key sk
by computing sk’ + HIBE.Delegate(pk, sk, nil), similarly rerandomize all the keys in set
sk¢, upto the j’'th position.

— Query the HIBE challenge oracle Ocy (-, -, -) on tuples (id;, tg,node) for all node € trace’
where id; corresponds to the QK(-) response on tf). B finds id; in its table, in the row
corresponding to tg.

— Compile all the rerandomized keys and the keys received from the key oracle into set
sky,. Send sky, to A. This is the response A expect as B simulates either FS.KeyGen()
or FS.Delegate() depending on the challenger’s sampled bit £3.

e At the end, A outputs its guess 3’ for 8, B forwards this without change to the challenger.
The advantage of B in winning the ExpL',\fBE game is same as the advantage of A in winning

the Exp}:rgo game as all the responses to A’s queries are simulated correctly by B.

C Proof of K-hop Deniability

Theorem C.1. Any time-deniable signature scheme satisfying the deniability property as defined
in definition 5.5, also satisfies the k-hop deniability property as defined in definition 5.6.

We prove this by a hybrid argument. In each subsequent hybrid H we will slightly modify the
security game until we get to one where the advantage in distinguishing is indisputably negligible
because both inputs will be drawn from the same distribution.

Let Hq be the original k-hop security game and consider the sequence of hybrids H; ... #H; that
are defined as follows:

H; = In each of these hybrids our goal will be to eliminate the dependency of AltSign* on the
message (mi—1,ti—1). H; is identical to H;—1 except when 8 = 1, o is generated as

AItSignk_i(vka (mia tia Ui)a {(mi-}—la ti+1)a ey (m*a t*)}) (8)
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where o; « Sign(sk, m;, t;).

In the discussion that follows let H; denote the outcome of H;, that is the probability that A
correctly guesses the bit 8’ chosen by the challenger. We let the notation #;_1 ~ H; mean there is
negligible difference between the success of A in #;—1 and H;.

Claim 4. Vi € [k], Hi1~H;

For the sake of contradiction, suppose this is not true and 3 a non-negligible function p(X)
so that | Pr(Ay outputs 8’ | H#;) — Pr(Ay outputs 8’ | H;_1)| = p(A). Without loss of generality,
assume Pr(Ay outputs 8’ | H;) > Pr(Ay outputs 8’ | H;—1). We now use this difference in success
probabilities and the adversary A to construct an adversary B that has non-negligible advantage

in ExpIND
Description of B

e B receives vk from its challenger and sends it to .A. It also initializes an empty table 7 and
uniformly samples 3 & {0,1}

e In the query phase, B responds to the sign queries from A using the Og;g, oracle: it forwards
(m,t) to Osjgn, receives (id, o), and records (id, m,t, o) in 7. It then returns (id, o) to A,.

e In the query phase, let a challenge query to Ocy, from Ay be id, {(m;, ;) };ck—1), m*, t*.

— Check if 7 has an identifier id. If not output L.
— If B/ =0, query Osjgn on m*,t* to get (id*,0*) and return o* to Ay
— Else if 8/ =1 and i = 1, let id’ = id. Otherwise query Osjgn on (m;—1,ti—1) to get id’, o
B makes a query to its challenge oracle with id’, m;,t; and receives o;.
— Compute o* < AItSignk_i(vk, (mg, ti, o),
{(mit1,tit1),...(m*,t*)}) and send o* to Ay
e Let b be the output of Ay. If 3/ = b, return 0. Else return 1.

Analysis
We now analyze B’s success probability. In the discussion that follows, let 8 be the bit chosen

by the challenger in the ExpB‘ISD game.

Pr(B outputs ) =

l\.’Jl'—‘

Pr(B outputs 8 | § = 0)+
1

Pr(B outputs 8 | 8 = 1)

l\.’JI'—‘

2

Pr(A) succeeds in H; | 8 = 0)+

1

3 [1 — Pr(A) succeeds in H;—1 | B = 1)]

+ = [Pr(.A)\ succeeds in H; | B = 0)
Pr(.AA succeeds in H;—1 | B = 1)]

l\.‘JIP—‘



This advantage is non-negligible because p is non-negligible. And this contradicts our assump-
tion that our scheme is secure in the sense of definition 5.5. Our claim follows.

Claim 5. V distinguishers D, the advantage of D in Hy is 0

Recall that in Hy we have replaced AItSign’c with
AltSign*~* (vk, (m*, t*,0), {}) = AltSign® (vk, (m*,t*,0),{}) = o where o « Sign(sk, m*,t*). There-
fore in H;, when computing any challenge queries the resulting computed signatures are

o0 « Sign(sk,m*,t*) (9)

ol « Sign(sk,m*, t*) (10)

The distributions of ¢° and o! are thus identical and trivially no distinguisher can have an
advantage in distinguishing between them.

D Lewko’s Prime-Order HIBE Scheme

This is a description of Lewko’s[27] prime order translation for an unbounded HIBE scheme. This
scheme performs some operations over vectors of n-dimensional space, similar to Lewko’s work we
describe the scheme for n = 10.

Setup(1*) — (pk, msk): The setup algorithm takes as input the security parameter 1*. A bilinear
group G of sufficiently large prime order p is selected, where the bilinear map is denoted by
e : GxG — Gp. The random dual orthonormal bases required for the scheme are also sampled
as part of this algorithm (D, D*) - Dual (Z). Let D = {dy, ..., d,} and D* = {d}, ..., d%}.
It also chooses random exponents oy, az,0,0,7v,§ € Z,. The public parameters, which we
describe as part of the public key are

pk = {G,p, e(g, 9) % e(g, )2 h, g, . ,g'i“}
and the master secret key is

Teo e - T T T T T
— d d: d dy _0d; _0d d* d*
msk = {Gapaalaa%glagzag’y lagE 2,93, 9 4190 "sga (’}

KeyGen(msk, (ID,...,ID;)) — skip: The key generation algorithm samples random values

Ty & Zy for each i € [j]. It also samples random values y; & Zp and w; & Zy for i € [j]
under the constraints that y; +y2 + --- + y; = a1 and wy + wp + --- + w; = az. For each
i € [j], it computes:
K. — gy,;(Tf—f—w,;Zﬁﬁ—r’l'ID,~0(Z§—T§0(Z§+T§ID,-0(T§,—T§GZ£.
T
The secret key is output as:

— d: _edy 0ds 0d% od: ody
SkID_ {g71’g£ 2,977%,9 4190 "’ga 61K1’--'1Kj}
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Delegate(sk;p, IDj+1) — skip|ip,.,: The delegation algorithm samples random values wh, wi &
Z, for each i € [j + 1]. It also samples random values y/, w! & Z, for i € [j + 1] subject

to the constraint that ) + -7, = 0 = w) +---w},. Let g'h, gfdz g3 gfdi gods gods
K, ..., K; denote the elements of skyp. The delegated key skyp|s Dji1 is formed as follows:

= L di ey 05 0d; pods oody
'SI‘:ID|IDJ-+l = {97 1’g§ 2, g% gYd1 gods5 gods
K - qyi7¢f{+wi££§+w}1D10¢T5—w%(;,i:;.,.wé IDyod:—wiod:
K gygvrfi+w_;EzT;+w{'mlod‘;_w{g,f;+wgmwgg_wgagg
qy_§-+1’7t71+w_’7.+1§d";+w{“1D_,-+loJ;

i tlg g J+1 ) 7 it g
-g wy ' 0ditwy, T IDjod:—wy T odg

Encrypt(pk, M, I1D) — ct: The encryption algorithm samples random values ti,t for each i € [j],

as well as random values s1, s2 <£ Zyp. It computes

Co = Me(g, ) B Fe(g, g) 22375

and
Cz = qsl dl +82d2 +ti d3 +1D1t'id4 +ta d5 +1D1t§d(,

for each i € [j]. The ciphertext is ¢t := {Cp, Cy,...,C;}
Decrypt(ct, skyp) = M : The decryption algorithm computes
J
B:=]]e(Ci Ki)

i=1

and computes the message as:

M =Cy/B
D.1 Proof of Key-Indistinguishability

Theorem D.1. The prime order variant of Lewko’s scheme from [27] satisfies the key-indistinguishability
property.

The delegation algorithm (in Appendix D) in Lewko’s prime order scheme [27] re-randomizes
each exponent in a secret key. Each group element (the ones which are unique for an identity) in
the key generated by KeyGen(), is of the form:

K. — gyidlz+wid22+r{ID50(i:’;—r’i()(ﬁ—f—réIDia(z;—r;g(Té
i

Where the values y; <—$ Zyp and w; ($_ Zy, for i € [j + 1] are under the constraints that y; + y2 +
o+ yie1 = oy and wy +wo + - -+ wjip1 = Q.

Whereas, in the key generated by Delegate(), each group element (the ones which are unique
for an identity) is of the form:
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K = K} - g" Iyd+w! €5 +wi 1D10d5—wi 05 +wil Dyods—wiods

Where K is the ¢’th group element of the key of the identity which was used as an input
for Delegate(). The following variables are sampled uniformly at random, w?,w} & Zy, for each

i € [j + 1]. It also samples random values y, w; & Z,, for i € [j + 1] subject to the constraint that
y'1+--~y;-+1 =0=w'1+~~~w;+1.

The key fact to note is that the exponent of g in K] the variables yj + vy, .. Y+ fyu;-,'yy;- 1
are randomly distributed up to the constraint that their sum is a1, and similarly wn +§w1, cos Wit
{w I wa +1 are randomly distributed up to the constraint that their sum is ap. Also, r] + wj and
rh + wh are uniformly random for each i. The keys generated via KeyGen() are also sampled from
the same distributions with the exact same constraints. This gives us the fact that the distribution
of a secret key obtained through any sequence of delegations is the same as the distribution of a
secret key for the same identity generated via KeyGen() making them statistically indistinguishable.
In fact, this is noted by Lewko in the description of the scheme as well. Moreover, the fact that
the adversary has the master secret key msk, doesn’t give it any advantage because the two keys
generated only differ in the randomness used to generate them, having the msk doesn’t give the
adversary any way to distinguish between these two because they are statistically indistinguishable
Therefore, the challenge key pairs (skg, ski_g) for the HIBE key-indistinguishability game Expl\Be
are indistinguishable to any PPT adversary.

E Analysis of Signature Size for various values of N

Size of Signature with Time Lock Puzzle

16

14

Size (KB)
-
N
o

"
<
s

Figure 5: The signature size - including the encrypted functional key in the time lock puzzle - for a
time-deniable signature scheme using the Gentry-Silverberg HIBE with BN-254 and varying values
of N

F  On the Necessity of Time-Lock Encryption

Definition F.1 (Time-Lock Encryption). A time-lock encryption scheme for computational refer-
ence clock C(1*), consists of the following two PPT algorithms:
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e TL.Encrypt(1*,m,7) — ct: The encryption algorithm takes as input the message, a security
parameter, and an integer to represent time.

e TL.Decrypt(ct,w) — m/ L: The decryption algorithm takes as input a ciphertext, and a
witness and outputs either a message m or the symbol L.

It has the following correctness property:

¢ & TL.Encrypt (1%, 7ace, m) ;
Pr wsr (s; C (1'\,7') N
m’ := TL.Decrypt (wr,c) :
m=m'

Il
—

Security. We say an admissible polysize adversaries A = {A)}ren = {(Ax0, Ax1) }ren, Ax =
(Ao, A1), (t,7,€)-breaks time-lock encryption scheme (TL.Encrypt, TL.Decrypt) for a clock C, if
size(A) € poly(A) and 7 € N such that

(mOa my, St) ($_ ‘A(C) (1Aa T) ) b (i {Oa 1}’
Pr| ¢« TL.Encrypt((l)‘,'r, mb) b ,Af (1’\,c, st) | —1/2>¢€
b=1b

Where admissibility of an adversary is defined similar to subsection 5.1.

Witness encryption schemes allow encrypting a message m to an instance x of an NP language
and allows decryption using a valid witness w such that (z,w) € R.

Definition F.2 (Extractable Witness Encryption). A witness encryption scheme for an NP relation
R consists of the following polynomial time algorithms:

e WE.Encrypt(1*,2,m) — ct: This algorithm takes as input the security parameter 1*, an un-
bounded string x which represents an instance of R and a message m. It outputs a ciphertext
ct which encrypts message m.

e WE.Decrypt(ct,w) — m: This algorithm takes as input a ciphertext ¢t and a witness w and
outputs a message m or the symbol L.

An extractable WE scheme has the following properties:

e Correctness. For all (z,w) € R and every message m:

Pr [WE.Decrypt(WE.Encrypt(l’\, z,m),w) = m] =1 - negl(})

e Extractable Security. Let (WE.Encrypt,
WE.Decrypt) be a witness encryption scheme for an NP relation R, such a scheme is secure
if for all PPT adversaries A and all polynomials g, there exists a PPT extractor E and a
polynomial p, such that for all auxiliary inputs z and for all z € {0,1}*:
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$ : A .
A(z,ct,z) =m

= Pr| E(z,z) =w: (z,w) € R | > 1/p(|z|)

Time-Lock Encryption from Time-Deniable Signatures. To construct a time-lock encryp-
tion scheme using deniable signatures and extractable witness encryption, consider (vk,sk) <
DS.KeyGen(1*,T()\)) and o < DS.Sign(sk,m,t). Now consider a witness encryption scheme which
encrypts to statements of the form = (m, t, o, vk) for a relation R where for witnesses of the forms
w— (m*,t*,0%), (z,w) € R if DS.Verify(vk,o*,m*,t*) — 1. We also provide the intuition behind
why this scheme is secure. The time-lock encryption algorithms proceed as follows

1. TL.Encrypt(1*,m,t + T): It outputs ct « WE.Encrypt(1*, z, m), where z = (m, t, o, vk).

2. TL.Decrypt(ct, w): Since it takes time T' to create ¢* from o, after time T" a valid witness
is available to run the decryption algorithm for WE with witness (m*,t*,0*). Output m’ «
WE.Decrypt(ct, w).

The intuition behind the security argument is essentially that no admissible adversary should
be able to distinguish an encryption of mg from an encryption of m; as this adversary is depth
bounded. Otherwise, such an adversary computes w € R, i.e., a different signature ¢* on some
message, timestamp pair (m*,t*) by performing significantly less operations than the number of
operations required. This adversary is solving the time-lock puzzle in sequential time less than 7.
Given such a distinguishing adversary we can leverage the extractor for witness encryption to break
the unforgeability property for deniable signatures.

G On the Necessity of Secure Timestamps

Recall that in our definition, the AltSign algorithm takes as input a previously computed valid
signature (or forgery). In particular, our notion does not rely upon the use of cryptographic
timestamps.

An alternative notion discussed in Section 2 is one where AltSign does not require a previously
computed signature as input; instead it only uses a timestamp issued by an external server to
create a forgery. We argue that in the latter case, the timestamps issued by the server must be
cryptographic (and in particular, unpredictable or unforgeable, depending on the implementation).

Suppose this is not the case. Then we can devise a simple attack using the AltSign algorithm to
break the unforgeability of the signature scheme. Consider a (non-uniform) adversary A = (A, .4;)
that wants to generate a forged signature for any message m*, and any time-stamp t*. Since we
allow for arbitrary polynomial time pre-processing in the unforegeability game, Ap runs AltSign on
input m* and g(t*) to compute a forged signature, where g(-) computes the output of the time server
for time ¢* (this also captures the scenario that the time stamp is entirely ignored by Sign/AltSign).
Since there is no security property associated with the timestamps issued by the server, g(-) is a
function that can be computed efficiently, so Ag is polynomial time.

Let o* be the forged signature computed by Ap, who passes it along to A; to output as its
forgery. Since the above strategy works for any (m*,t*), and A; needs only a single computational
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step (to output the forged signature received from A), this attack constitutes a valid forgery of
the time-deniable signature scheme.

H Epochal Signatures

We recall the unforgeability game and definitions from the work [25] by Hiilsing and Weber. An
epochal signature scheme ES has the following four algorithms:

ES.KeyGen(1*, At, E, V) — (pk, sk): Takes as input a security-parameter 1*, an epoch-length At,
the maximum number of epochs E € poly()A) and the number of epochs V' < E for which the
signatures are valid and generates the long-term key pair (pk, sk).

ES.Evolve(sk) — (pinfo,,sk’/ L1): Takes as input the long-term secret key sk and returns the
public epoch information pinfo, and an updated secret key sk’ or L if sk has already been
evolved E times.

ES.Sign(ske, m) — o: Takes as input a secret key sk. and a message m and outputs a signature o
for the corresponding epoch e.

ES.Verify(pk, e, 0,m) — b: Takes as input the public key pk, an epoch e, a signature o and a
message m and returns a bit b.

The unforgeability definition is defined with respect to the unforgeability game Expggu: defined

as follows:

Setup. The challenger runs (pk, sk) < KeyGen(1*, At, E,V) and gives the public key pk to the
adversary A. It sets ty to the current time, sets e = 0 and initializes the set of queries
qg=10,...,0], where the k’th entry in the set corresponds to the set of queries asked in epoch
k.

Query Phase. In this phase, the adversary gets to query two different oracles.

1. The key evolution oracle Ogyope(-) takes as input some wall clock time ¢, checks that
t > to + e.At which indicates that the current time is the e’th epoch. It computes
(pinfo,, ske) « Evolve(sk) if t satisfies the above properties. At the end of an Ogyolve (sk, -)
query, the adversary also gets access to the corresponding sign oracle for epoch e,

oSign (Skea )
2. The sign oracle Osjgn(ske, -, -) takes as input a secret key ske, wall-clock time ¢ and a

message m. If t < ty + e.At, it outputs a signature o < Sign(sk.,m) on the message
and updates the corresponding epoch in the query set gle] U {m}.

Forge. The adversary outputs its forgery (¢’,m’) and wins (game outputs 1) if:

1. For the corresponding epoch €', there is no query corresponding to this message (m’, e’) ¢
qle’].
2. Verify(pk,e',o’,m’) outputs 1.
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The advantage of the adversary A is defined as
Adv (1%, At) = Pr[ExpgdF (11, At, E, V) = 1].

Remark: To the best of our knowledge the authors do not define the function now(). We assume
that this is the current time value and hence implies the existence of a wall clock.

Definition H.1 (Unforgeability of Epochal Signatures). An epochal signature scheme ¥ is unforge-
able if there is no efficient adversary that has a non-negligible chance of winning the unforgeability

game ExpLEJQ'F:

VA€ PPT,AeN,E € poly(\),V €{l,....,E 1} :
Adv (1%, At) < negl())

Because the time-lock puzzle security definition in their work is different from ours, we give
the indistinguishability game below and denote it as Exp?",_D. It is assumed in this game that the

challenger has access to a wall-clock.

Setup. The challenger sends the security parameter 1* and the difficulty parameter At to the
adversary.

Challenge. The adversary A picks the challenge messages (mg,m1) and sends them to the
challenger. The challenger performs the following operations:

e Picks a random bit b & {0,1}.

e Computes ¢ + TimeLock.Gen(1*, At,m;), sends ¢ to A and sets current time as #,.

Response. A sends its guess b’ for b to the challenger and wins (game outputs 1) if the following
conditions are satisfied:

e b=1V.
e Let the wall-clock time for when the challenger receives A’s guess be t;, then it should
be true that 1 — tg < At.

The advantage of the adversary A is defined as Adv4(1*, At) = Pr[Expi{° (1*, At) = 1].

Definition H.2 (TimelLock security according to [25]). A time-lock puzzle is secure if VA € poly(}),
Adv 4(1*, At) < negl(\).

H.1 Faulty Epochal Signature Construction

Given a secure epochal signature construction ¥, we use it to construct another secure epochal
signature scheme ¥’ which has undesirable properties as discussed in Section 3. However, due to
certain properties implicit in the definition of an epochal signature scheme, the scheme we present
as the counter example is fairly intricate. We begin with an informal description of the counter
example, which suffices for a relaxed notion of epochal signatures. We build upon this to present
our final scheme ¥’ - we formally argue that ¥’ (i) is a secure epochal signature scheme; and (ii) is
not a time-deniable signature scheme.

We first consider a counter example that satisfies a weaker but still reasonable notion of deni-
ability where the judge never gets access to any secret key material. In this setting, our counter
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KeyGen(1*, At, E, V) : Sign(sk.,m) :

pk, sk ife==0:
¥.KeyGen(1*, At, E, V) sk, « parse(sk.)
return (pk, sk) return X.Sign(sk., m)
Evolve(sk,) : ( ske,r0,> + parse(sk.,)
ife== T1,72,73

ske < sk,

o « ¥.Sign(sk.,m)

return X.Evolve(sk,)
Csk  ske @ (r2 ©73)

ske, 70, cup < TimeLock.Gen (1%,
« parse(sk.)
T1,T2,T3 ) _ At + E’ATO)
¢y, < TimeLock.Gen(1%,
P
At + ¢, 7‘1)
pinfoey1, if m == rq:
+ X.Evolve(ske) ,
Ske+1 (ARl )
else if m == ry:
ro,T1,72,7T3 < R 13
return pinfoe-}-lv (Ske+17 ro,T1,7T2, TS) else:
"+ R
Verify(pk,e,o’,m) : return o, Cuip, Cyyys Csk T’
ife==0:
oo
else:
!
07 =Yy ,Y < (_ g

return X.Verify(pk, e, o, m)

Figure 6: Our counterexample ES construction ¥’ built from another secure epochal signature
scheme ¥. The domain of R is {0,1}* and Vi € {0,1,2,3},7; € R. € can be any value that is not
0, but we are especially interested in small e.
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example is fairly simple: each epoch e has a special trigger message m; associated with it. If a
signature ever needs to be made on m}, in epoch e, then the signature contains the master secret
key msk of the scheme. Included with every signature is a time lock puzzle that holds the special
trigger message m;, where the difficulty parameter on the puzzle is slightly more than At. It is
straightforward to see that this scheme is still secure under the ES unforgeability game: the epoch
e will always expire by the time the adversary could attempt to use m} by solving the time lock
puzzle. However, in the unforgeability game of time-deniable signatures, such a scheme is trivially
defeated by an adversary in the pre-processing phase since the time lock puzzle can be solved during
this phase.

The main problem with this counter-example is that the construction does not satisfy perfect
deniability. Perfect deniability requires that one can simulate a single signature perfectly without
revealing whether or not the signature was a forgery. Specifically in our counter example, we must
ensure that one reply can never give away msk. To accomplish this, we encrypt msk under a
key that is (2,2) secret shared. In order to recover the key, the adversary must make two queries
which is explicitly disallowed in the deniability definition of epochal signatures. This ensures that
only one share of the key is ever recovered, and thus we can simulate this share correctly without
knowledge of msk. The final construction is presented in Figure 6. We would like to emphasize
that this counter example is meant to show weaknesses in the unforgeability definition and that
almost all of the complexity is added because of the deniability definition.

Theorem H.1. The epochal signature construction in figure 6 is unforgeable under the security
game of definition H.1

Proof. We prove this by a standard hybrid argument starting with the real unforgeability game of
Ho. For any hybrid H;, the output of H; is considered to be the challenger’s output bit i.e. the
adversary’s success probability. This is related but not necessarily equal to Advz*. Therefore,
the statement H; ~ #;,, means that the probability of A succeeding between two different hybrid
games is negligible. For security, we want Advi‘"()\) < negl(\) where negl(}) is a negligible function
in the security parameter A. Where details are omitted from the description of hybrid #;, it is
assumed that they are the same as in H;_1.

H1 : Guess the challenge epoch e* of A by uniformly choosing an epoch in {1,..., E} where E
is the maximum number of epochs. If the guess is incorrect, the challenger’s output is 0.

Analysis:
- 1
Advir()) = 5 AdvO())
O

Let rg, r1, 72,73 be the ephemeral randomness used in an epoch e. Consider the following hybrid,

Hg: If Je € {1,...e*} such that A queries the sign oracle on messages ro or 71, the challenger
outputs 0.

Let F' be the event that on at least one epoch e € {1,...e*}, A queries on one or both of ry and
ry. If Pr[F] < negl(A), then H; ~ H3.

Lemma H.1. Pr[F] < negl(A)
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We first provide a sequence of hybrids ’H;f’,j,k where i € {1,...,e*},j € N,k € {0,1}.

’Hiz,j,k : Let rq,71, 79,73 be the ephemeral randomness used in epoch i. If j is not 0, on the j*
sign query of A the time lock puzzle that normally holds 7 instead encrypts another random value
7, where 7} # ri.

Note that H; = 'H%O i for any k. For a given epoch i, we will be concerned with the possibly
infinite sequence of hybrids (M o, HZ o1, Hz1,0, He11,---) If this sequence is actually finite with
the last query of A in i being r(X), then H | =HZ 1 g0.

Claim 6. Vi€ {1,...e"},Vj € {1,... .}, H}, 1, = H}

Suppose this is not true and there exists a distinguisher D with non-negligible advantage that
distinguishes between A’s success probability in 7 j—1,1 and H? ;o that outputs 0 when it thinks
A’s success is from H; j—1,1 and 1 otherwise. Consider the following TimelLock adversary B which
uses A and D to break the security of the TimeLock.

Description of TimeLock adversary B:

e Execute ¥.KeyGen(1*, At, E, V) to get pk, sk. Give pk to A
e On queries in epochs e > i, respond as normal.

e For the j** query in i, sample m uniformly from R subject to the constraint that m is not
equal to 79. Send to the TimelLock challenger (rg,m). Receive s. Construct o, c:lp,csk,r’ as
normal and send to A the signature o, s, c;lp, CoksT'.

e Let b be the output of A. Send b =¥ to D. If D outputs b respond with b.

Analysis:

The probability that B wins is equivalent to the probability of D distinguishing correctly. Since
D by assumption has non-negligible advantage so does B, in contradiction to the security of the
TimeLock.

Claim 7. Vi € {1, . .C*},Vj € N,Hij’o =~ Hiz,j,l

Proof sketch. The argument here is equivalent to the previous one, except instead of B challenging
on (rg,m) the challenge is (r1,m). 0O

In order to be a successful adversary, A must run in polynomial time, which means that the
number of queries that 4 can make in any particular epoch is also bound by some polynomial.
Therefore, Vi the sequences (H1:2,0,0’Hi2,0,1’ ...) must also be bounded by poly(\). Since e* < F €
poly(A) is also polynomially bounded by the security parameter and the last hybrid in sequence
i — 1 is actually the first hybrid in %, there is a negligible difference between H%,o,o and the last
hybrid in the sequence beginning with H?2. 01

The probability that A asks for either appropriate trigger in any of the epochs e = 1...¢e* can
now be calculated by multiple union bounds. For an epoch i the probability that A guesses either
To Or 77 18 % where M is the space of all possible messages that can be signed. If M = {0,1}*
the probability this happens in any epoch before or at the challenge epoch is upper bounded by
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"’,_',—‘i' which is negligible. Let e* = r()A) and ¢(\) be the maximum number of queries A asks for in

any epoch. Then we have

2e*

X

2r(X)
22

Pr[F] = q(\) - ¢* - AdvE*PTC () +

IND
= g(\)r(VAdvy Pt () +
IND
By assumption Advgxp ™ () is negligible and 2% is clearly negligible therefore Pr[F] is as well.
This completes our proof of the lemma.

Recall that in H3 we know that A will not ask for a query on the trigger message r* during the
challenge epoch €* or any earlier epoch. We can now argue security by reducing to the security of
the original epochal signature scheme ES’. Let B be an adversary for the ES unforgeability game
that is constructed from A in Hg as described below.

Description of ES adversary B:

e Receive pk from the challenger and pass pk on to A

e For any evolve query asked by A before or during e*, make the same query to the challenger.
Receive pin fo.. Re-sample new randomness rg, ry,79,73. Send pinfo, to A

e For any sign query m for epoch e < e*, make the same query to the challenger and receive o.
Forward o to A along with correctly strutured values cyp, cﬁlp, Csk, T’

e When A gives forgery (m*, o*), parse out the first component & and give the forgery (m*, )
to the challenger

Analysis: It should be clear that in this case if A succeeds B must as well since A never asks
for a query on either r¢ or r; in the relevant epochs before the forgery and B is merely making the
same queries to its challenger that A is. Therefore,

UNF
Adv’3()) = AdvPE ()) < negl()).
Since the advantage of A in H3 is negligible, the construction is unforgeable.

Theorem H.2. The epochal signature construction in figure 6 is deniable according to the definition

of [25].

We first give a description of the simulator Sim for the deniability game. It makes use of ¥.Sim
which is the simulator for the deniability of X.

44



Sim(m, eg, pinfoe,te, ) :
r—TR
cup < TimeLock.Gen(1*, At + ¢, 1)
Cgk < R
R
o E.Sim(m, eo,pinfoe()+el)
if60==00r60== 1:
return o

return o, ¢yp, Cok, r

In order to prove that our scheme is deniable we need the distributions of o, ¢y, sk, 7’ to be indis-
tiguishable when generated via Sign or Sim when the distinguisher has access to pk, ske,te,, Pinfoey+e, -

We can safely ignore o because ¢ is conditionally independent from the tuple (¢, cor, ') given
sk and it does not reveal information on what it was derived from because of the deniability of
3. We can also restrict our analysis to e > 1, since when e = 1, ¢ is the only component of the
signature.

This can be simplified to us needing the following to hold for all messages m, for all valid
epochs ey # 0 and ey # 1, for all valid e;, VYV, and all key generation outputs (pk,sk) «
KeyGen(1*, At, E,V):

( 70,71,72,73 ¢ R,

(-’ Skeo) — EVO'Vee"(sk)’

(pie()+el’ Ske"+el) « Evolve™ (skeo)’ . Ctlp, C;lp’ csk,T,a
Ctlp TimeLOCk'Gen(lA’ At + €, 7'0)’ . pk, skeo+elapieu+el
¢y,  TimeLock.Gen(1*, At + €,7)

Cok +— (ro @ 13) D skey, 7’ R*™

Q

(19,71 < R, 7
(Piegter s Skeg+e) < Evolve® ™1 (sk)
cup + TimeLock.Gen(1*, At + €, 1), :
Chap TimeLock.Gen(1*, At + €,71)

(csk — R, <R |

/ ’
Ctlp; ctlp’ CsksT

pk’ Skel)+€1 ) pie(,+el

The asterisks on the left distribution for " denote that the value of r’ is mostly random, except
when m = rg or m = ry. In that case, v’ = ry or v’ = r3 respectively.

Since V' > 1, the updated key sk.,;., does not contain the randomness used in epoch e.
However, both “trigger” messages, are made available to the judge by breaking the time lock
puzzles ¢y, and c{lp. Luckily this, at most, gives the judge access to one of r or r3: the judge only
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KeyGen(1*, At, E, V) : Sign(ske,m) :

vk, sk « sk, e + parse(sk,)
DS.KeyGen(1*,¢(A) - o —
V. At-d*) DS.Sign(sk,m,e)

return (vk, (sk,0))  return o

Evolve(sk’) : Verify(pk,e,o,m) :
sk, e < parse(sk’) return
e=e+1 DS.Verify(pk, o,m, €)

o + DS.Sign(sk,0,¢)
return (o, (sk,e))

Figure 7: An ES construction from a time-deniable signature scheme DS. €()) is the admissibility
parameter for the time-deniable signature scheme. The sentinel message for pinfo is m = 0.

gets to see the output of one signing query so if the judge uses the message m = rg or m = ry it
receives either ry or r3 as r’. Recall that cg = (ro @ r3) @ ske, whenever Sign is used. Because
the judge can only get access to at most one share, ¢y is indistinguishable from a random element
of R. This also means that the random pad ' is independent of ¢y to the perspective of the
judge, regardless of if it is supposed to be a share of the one time pad or not. Therefore the
joint distribution of (cgk,cyp, ') in the left-hand side of the equation is one where each value is
independent from the others, ¢, and r’ are uniform, and ¢y, locks a uniformly random value. This
is precisely what the right hand side is and thus completes our proof.

H.2 Time-Deniable Signatures as Epochal Signatures

In this section we show any secure DS scheme can be generically transformed into a secure ES
scheme. At a high level, our construction is a simple transformation where verification and signing
uses the time-deniable signature scheme and the evolve algorithm keeps track of the current epoch.
pinfo. contains a signature on a dummy, sentinel message at the timestamp corresponding to epoch
e. Because of the different models of time considered by the two primitives, we do a translation
between wall-clock time and circuit depth.We make the following assumption: for any circuit C'
that terminates in wall-clock time ¢, the depth of C' when it terminates is d¢ - t where d¢ is a
constant that depends on C. Let C be the set of circuits for which some input z causes C to
terminate before or at wall-clock time ¢ and let d* = Igg%c dc. d* is needed to correctly set the

time parameter given to the time-deniable signature scheme’s KeyGen algorithm. The construction
appears in Figure 7.

Theorem H.3. The ES scheme presented in Figure 7 is unforgeable if the time-deniable signature
scheme DS is unforgeable.

We prove this by contradiction, supposing there exists an adversary B who succeeds with non-
negligible advantage in the ES unforgeability game and then using that adversary to construct an
adversary A = (A, A;) for the DS unforgeability game. For the ES unforgeability definition we
assume that before the counter e is given to the Verify algorithm it is appropriately advanced.

46



Description of A:

e Receive vk from the challenger. Give vk to B. Initialize a counter ctr = 0 and the wall clock
time tinit = now().

e On queries Ogyolve check if ' > t;ni + (e + 1) At where t is the current wall clock time. If yes,
set ctr = ctr + 1 and query Osjgn on message 0 to receive . Return o as pinfo. Else do not
advance the counter and output L.

e On queries Osjgn from B with message m, query the challenger’s Osjgn oracle with m and
timestamp ctr. Return o to B.

e If B returns signature o* in epoch e* on message m*, then A returns (m*, e*, o*) as its forgery.

First, we argue that A is an admissible adversary in the time-deniable signature unforgeability
game. Let Aj denote the interactions of A with B before epoch e* begins. Because for an ES
scheme, size(B) € poly()A) and since A is also doing poly(\) work while interacting with B, we have
that size(Ap) € poly(X). If we let the output of A and B after this interaction be an advice string
z, we can then split off the rest of A and B’s interaction as A;. For B to be a successful adversary,
they must be able to produce m*, o* before wall clock time V' At has past since the start of epoch
e*. Then we have an upper bound on the circuit depth of B from the start of e* until termination
as d*V At. Since A just forwards queries between the challenger and B the overhead it adds is
minimal (on the order of the number of queries made by B) and can be ignored for the sake of this
proof sketch. depth(A;) is therefore appropriately bounded as d*At -V < TALV-e(A),

We now argue that if B is successful in its forgery so is A. As said ear&ier, in order for B
to succeed it must produce a valid pair (m*,o*) before the wall clock time bound where validity
means that DS.Verify succeeds given the current timestamp is e* and that B has never asked for a
signature on m* at time e*. The tuple (m*, e*,0*) is thus a valid forgery for A as well.

Theorem H.4. The ES scheme presented in Figure 7 is deniable if the time-deniable signature
scheme DS is deniable.

Suppose this is not true and there exists a judge J that succeeds with non-negligible advantage
in the ES deniability game. Then we will construct an adversary A that succeeds with non-negligible
advantage in the DS deniability game.

Description of A:

e Receive vk, sk from the challenger. Forward sk to J.

e Uniformly sample a random message m. When 7 specifies its challenge (m*, ep, e1), query
Osign With (m, eq + e1) and receive (id, o).

e Query Ocyp with id,m*,eq to get o*. Send o* to J. If J responds with b send b to the
challenger.

J expects to see one of two signatures. One creates the signature by evolving sk e times while
the other evolves the key ey + e; times and uses pinfoe,+e,. When the challenger’s bit b = 0, A
produces the output of ES.Sign in Figure 7 which is simply DS.Sign. When b = 1, the output is
produced by the simulator S in the ES deniability game which is the equivalent to DS.AltSign in our
construction. Therefore, the distributions J sees are correct and if J is successful in distinguishing
then so is A.
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